Author
Listed:
- Ya-zhi Wei
- Zhi-hua Yao
- Xiao-lei Chong
- Jian-hua Zhang
- Jun Zhang
Abstract
The mechanical properties of loess-steel interface are of great significance for understanding the residual strength and deformation of loess. However, the undisturbed loess has significant structural properties, while the remolded loess has weak structural properties. There are few reports on the mechanical properties of loess-steel interface from the structural point of view. This paper focused on the ring shear test between undisturbed loess as well as its remolded loess and steel interface under the same physical mechanics and test conditions (water content, shear rate and vertical pressure), and explored the influence mechanism of structure on the mechanical deformation characteristics of steel-loess interface. The results show that the shear rate has little effect on the residual strength of the undisturbed and remolded loess-steel interface. However, the water content has a significant influence on the residual strength of the loess-steel interface, moreover, the residual internal friction angle is the dominant factor supporting the residual strength of the loess-steel interface. In general, the residual strength of the undisturbed loess-steel interface is greater than that of the remolded loess specimen (for example, the maximum percentage of residual strength difference between undisturbed and remolded loess specimens under the same moisture content is 6.8%), which is because that compared with the mosaic arrangement structure of the remolded loess, the overhead arrangement structure of the undisturbed loess skeleton particles makes the loess particles on the loess-steel interface re-adjust the arrangement direction earlier and reach a stable speed relatively faster. The loess particles with angular angles in the undisturbed loess make the residual internal friction between the particles greater than the smoother particles of the remolded loess (for example, the maximum percentage of residual cohesion difference between undisturbed and remolded loess specimens under the same vertical pressure is 4.29%), and the intact cement between undisturbed loess particles brings stronger cohesion than the remolded loess particles with destroyed cement (for example, the maximum difference percentage of residual cohesion between undisturbed and remolded soil specimens under the same vertical pressure is 33.80%). The test results provide experimental basis for further revealing the influence mechanism of structure, and parameter basis for similar engineering construction.
Suggested Citation
Ya-zhi Wei & Zhi-hua Yao & Xiao-lei Chong & Jian-hua Zhang & Jun Zhang, 2022.
"Influence mechanism of structure on shear mechanical deformation characteristics of loess-steel interface,"
PLOS ONE, Public Library of Science, vol. 17(2), pages 1-33, February.
Handle:
RePEc:plo:pone00:0263676
DOI: 10.1371/journal.pone.0263676
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0263676. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.