Author
Listed:
- Shuo Han
- Jinliang Xu
- Menghua Yan
- Zhaoxin Liu
Abstract
Icy bridge deck in winter has tremendous consequences for expressway traffic safety, which is closely related to the bridge pavement temperature. In this paper, the critical meteorological conditions of icy bridge deck were predicted by multiple linear regression and BP neural network respectively. Firstly, the main parameters affecting the bridge pavement temperature were determined by Pearson partial correlation analysis based on the three-year winter meteorological data of the traffic meteorological monitoring station on the bridge in Shandong province. Secondly, the bridge pavement temperature is selected as the dependent variable, while air temperature, wind speed, relative humidity, dew point temperature, wet bulb temperature and wind cold temperature were selected as independent variables, and the bridge pavement temperature prediction models of linear regression and 5-layer hidden layer classical BP neural network regression were established respectively based on whether the variables are linear or not. Finally, the prediction accuracy of the above models was compared by using the measured data. The results show that the linear regression model could be established only with air temperature, relative humidity and wind speed, owing to collinearity problem. Compared with multiple linear regression model, the predicted value of the BP neural network has a higher degree of fitting with the measured data, and the coefficient of determination reaches 0.7929. Using multiple linear regression and BP neural network, the critical meteorological conditions of bridge deck icing in winter can be effectively predicted even when the sample size is insufficient.
Suggested Citation
Shuo Han & Jinliang Xu & Menghua Yan & Zhaoxin Liu, 2022.
"Using multiple linear regression and BP neural network to predict critical meteorological conditions of expressway bridge pavement icing,"
PLOS ONE, Public Library of Science, vol. 17(2), pages 1-15, February.
Handle:
RePEc:plo:pone00:0263539
DOI: 10.1371/journal.pone.0263539
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0263539. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.