Author
Listed:
- Omnia Hamdy
- Haitham S Mohammed
Abstract
Infrared (IR) lasers are extensively utilized as an effective tool in many medical practices. Nevertheless, light penetration into the inspected tissue, which is highly affected by tissue optical properties, is a crucial factor for successful optical procedures. Although the optical properties are highly wavelength-dependent, they can be affected by the power of the incident laser. The present study demonstrates a considerable change in the scattering and absorption coefficients as a result of varying the incident laser power probing into biological samples at a constant laser wavelength (808 nm). The optical parameters were investigated using an integrating sphere and Kubelka-Munk model. Additionally, fluence distribution at the sample’s surface was modeled using COMSOL-multiphysics software. The experimental results were validated using Receiver Operating Characteristic (ROC) curves and Monte-Carlo simulation. The results showed that tissue scattering coefficient decreases as the incident laser power increases while the absorption coefficient experienced a slight change. Moreover, the penetration depth increases with the optical parameters. The reduction in the scattering coefficients leads to wider and more diffusive fluence rate distribution at the tissue surface. The simulation results showed a good agreement with the experimental data and revealed that tissue anisotropy may be responsible for this scattering reduction. The present findings could be considered in order for the specialists to accurately specify the laser optical dose in various biomedical applications.
Suggested Citation
Omnia Hamdy & Haitham S Mohammed, 2022.
"Variations in tissue optical parameters with the incident power of an infrared laser,"
PLOS ONE, Public Library of Science, vol. 17(1), pages 1-15, January.
Handle:
RePEc:plo:pone00:0263164
DOI: 10.1371/journal.pone.0263164
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0263164. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.