IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0262261.html
   My bibliography  Save this article

A comparative analysis of the principal component analysis and entropy weight methods to establish the indexing measurement

Author

Listed:
  • Robert M X Wu
  • Zhongwu Zhang
  • Wanjun Yan
  • Jianfeng Fan
  • Jinwen Gou
  • Bao Liu
  • Ergun Gide
  • Jeffrey Soar
  • Bo Shen
  • Syed Fazal-e-Hasan
  • Zengquan Liu
  • Peng Zhang
  • Peilin Wang
  • Xinxin Cui
  • Zhanfei Peng
  • Ya Wang

Abstract

Background: As the world’s largest coal producer, China was accounted for about 46% of global coal production. Among present coal mining risks, methane gas (called gas in this paper) explosion or ignition in an underground mine remains ever-present. Although many techniques have been used, gas accidents associated with the complex elements of underground gassy mines need more robust monitoring or warning systems to identify risks. This paper aimed to determine which single method between the PCA and Entropy methods better establishes a responsive weighted indexing measurement to improve coal mining safety. Methods: Qualitative and quantitative mixed research methodologies were adopted for this research, including analysis of two case studies, correlation analysis, and comparative analysis. The literature reviewed the most-used multi-criteria decision making (MCDM) methods, including subjective methods and objective methods. The advantages and disadvantages of each MCDM method were briefly discussed. One more round literature review was conducted to search publications between 2017 and 2019 in CNKI. Followed two case studies, correlation analysis and comparative analysis were then conducted. Research ethics was approved by the Shanxi Coking Coal Group Research Committee. Results: The literature searched a total of 25,831publications and found that the PCA method was the predominant method adopted, and the Entropy method was the second most widely adopted method. Two weighting methods were compared using two case studies. For the comparative analysis of Case Study 1, the PCA method appeared to be more responsive than the Entropy. For Case Study 2, the Entropy method is more responsive than the PCA. As a result, both methods were adopted for different cases in the case study mine and finally deployed for user acceptance testing on 5 November 2020. Conclusions: The findings and suggestions were provided as further scopes for further research. This research indicated that no single method could be adopted as the better option for establishing indexing measurement in all cases. The practical implication suggests that comparative analysis should always be conducted on each case and determine the appropriate weighting method to the relevant case. This research recommended that the PCA method was a dimension reduction technique that could be handy for identifying the critical variables or factors and effectively used in hazard, risk, and emergency assessment. The PCA method might also be well-applied for developing predicting and forecasting systems as it was sensitive to outliers. The Entropy method might be suitable for all the cases requiring the MCDM. There is also a need to conduct further research to probe the causal reasons why the PCA and Entropy methods were applied to each case and not the other way round. This research found that the Entropy method provides higher accuracy than the PCA method. This research also found that the Entropy method demonstrated to assess the weights of the higher dimension dataset was higher sensitivity than the lower dimensions. Finally, the comprehensive analysis indicates a need to explore a more responsive method for establishing a weighted indexing measurement for warning applications in hazard, risk, and emergency assessments.

Suggested Citation

  • Robert M X Wu & Zhongwu Zhang & Wanjun Yan & Jianfeng Fan & Jinwen Gou & Bao Liu & Ergun Gide & Jeffrey Soar & Bo Shen & Syed Fazal-e-Hasan & Zengquan Liu & Peng Zhang & Peilin Wang & Xinxin Cui & Zha, 2022. "A comparative analysis of the principal component analysis and entropy weight methods to establish the indexing measurement," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-26, January.
  • Handle: RePEc:plo:pone00:0262261
    DOI: 10.1371/journal.pone.0262261
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262261
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0262261&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0262261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aihua Wei & Duo Li & Yahong Zhou & Qinghai Deng & Liangdong Yan, 2021. "A novel combination approach for karst collapse susceptibility assessment using the analytic hierarchy process, catastrophe, and entropy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 405-430, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zewei Zhang & Qingjie Qi & Ye Cheng & Dawei Cui & Jinghu Yang, 2024. "An Integrated Model for Risk Assessment of Urban Road Collapse Based on China Accident Data," Sustainability, MDPI, vol. 16(5), pages 1-17, March.
    2. Mohammad Mehrabi, 2022. "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 901-937, March.
    3. Xiaoyi Zhang & Yichen Ruan & Weihao Xuan & Haijun Bao & Zhenhong Du, 2023. "Risk assessment and spatial regulation on urban ground collapse based on geo-detector: a case study of Hangzhou urban area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 525-543, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0262261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.