IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0261281.html
   My bibliography  Save this article

A framework of artificial light management for optimal plant development for smart greenhouse application

Author

Listed:
  • João Pereira
  • Abdul Mounem Mouazen
  • Mathias Foo
  • Hafiz Ahmed

Abstract

Smart greenhouse farming has emerged as one of the solutions to global food security, where farming productivity can be managed and improved in an automated manner. While it is known that plant development is highly dependent on the quantity and quality of light exposure, the specific impact of the different light properties is yet to be fully understood. In this study, using the model plant Arabidopsis, we systematically investigate how six different light properties (i.e., photoperiod, light offset, intensity, phase of dawn, duration of twilight and period) would affect plant development i.e., flowering time and hypocotyl (seedling stem) elongation using an established mathematical model of the plant circadian system relating light input to flowering time and hypocotyl elongation outputs for smart greenhouse application. We vary each of the light properties individually and then collectively to understand their effect on plant development. Our analyses show in comparison to the nominal value, the photoperiod of 18 hours, period of 24 hours, no light offset, phase of dawn of 0 hour, duration of twilight of 0.05 hour and a reduced light intensity of 1% are able to improve by at least 30% in days to flower (from 32.52 days to 20.61 days) and hypocotyl length (from 1.90 mm to 1.19mm) with the added benefit of reducing energy consumption by at least 15% (from 4.27 MWh/year to 3.62 MWh/year). These findings could provide beneficial solutions to the smart greenhouse farming industries in terms of achieving enhanced productivity while consuming less energy.

Suggested Citation

  • João Pereira & Abdul Mounem Mouazen & Mathias Foo & Hafiz Ahmed, 2021. "A framework of artificial light management for optimal plant development for smart greenhouse application," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-20, December.
  • Handle: RePEc:plo:pone00:0261281
    DOI: 10.1371/journal.pone.0261281
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261281
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0261281&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0261281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mathias Foo & Declan G Bates & Ozgur E Akman, 2020. "A simplified modelling framework facilitates more complex representations of plant circadian clocks," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-34, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0261281. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.