Author
Abstract
Data-based instruction (DBI) is an ongoing process to utilize students’ data for determining when and how to intensify intervention. It is an educational approach that is suggested as effective to enhance achievements of struggling learners, particularly for those who did not respond to intensive intervention in usual ways. In Korea, DBI was introduced and applied for students with learning difficulties especially since 2000 when the first Korea curriculum-based measurement (CBM) was developed as the name of Basic Academic Skills Assessment. Despite a number of studies accumulated since then, there has been a lack of research that examined the level of evidence-based practice (EBP) of DBI research. Thus, the present study sought to synthesize the DBI research so far in Korea by analyzing the effectiveness of DBI for school-aged students with learning difficulties via meta-analysis and evaluating the quality of the research. In this study, a total of 32 single-subject design studies were used. Multilevel meta-analysis revealed that the mean effect size of DBI was statistically significant (B = 1.34) and there was significant variance across participants in effect sizes. The results from the conditional model showed that exceptionality type, the number of sessions, and the length of each session were significantly accountable for the variability of effect sizes. In addition, the results of the qualitative analysis revealed the acceptable quality of the overall DBI research with some limitations. Based on these findings, implications and study limitations were discussed.
Suggested Citation
Dongil Kim & Seohyeon Choi, 2021.
"The Effects of Data-based Instruction (DBI) for Students with Learning Difficulties in Korea: A Single-subject Meta-analysis,"
PLOS ONE, Public Library of Science, vol. 16(12), pages 1-23, December.
Handle:
RePEc:plo:pone00:0261120
DOI: 10.1371/journal.pone.0261120
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0261120. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.