IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0260480.html
   My bibliography  Save this article

Neural network-based adaptive global sliding mode MPPT controller design for stand-alone photovoltaic systems

Author

Listed:
  • Izhar Ul Haq
  • Qudrat Khan
  • Safeer Ullah
  • Shahid Ahmed Khan
  • Rini Akmeliawati
  • Mehmood Ashraf Khan
  • Jamshed Iqbal

Abstract

The increasing energy demand and the target to reduce environmental pollution make it essential to use efficient and environment-friendly renewable energy systems. One of these systems is the Photovoltaic (PV) system which generates energy subject to variation in environmental conditions such as temperature and solar radiations. In the presence of these variations, it is necessary to extract the maximum power via the maximum power point tracking (MPPT) controller. This paper presents a nonlinear generalized global sliding mode controller (GGSMC) to harvest maximum power from a PV array using a DC-DC buck-boost converter. A feed-forward neural network (FFNN) is used to provide a reference voltage. A GGSMC is designed to track the FFNN generated reference subject to varying temperature and sunlight. The proposed control strategy, along with a modified sliding mode control, eliminates the reaching phase so that the sliding mode exists throughout the time. The system response observes no chattering and harmonic distortions. Finally, the simulation results using MATLAB/Simulink environment demonstrate the effectiveness, accuracy, and rapid tracking of the proposed control strategy. The results are compared with standard results of the nonlinear backstepping controller under abrupt changes in environmental conditions for further validation.

Suggested Citation

  • Izhar Ul Haq & Qudrat Khan & Safeer Ullah & Shahid Ahmed Khan & Rini Akmeliawati & Mehmood Ashraf Khan & Jamshed Iqbal, 2022. "Neural network-based adaptive global sliding mode MPPT controller design for stand-alone photovoltaic systems," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-29, January.
  • Handle: RePEc:plo:pone00:0260480
    DOI: 10.1371/journal.pone.0260480
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260480
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0260480&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0260480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Awais & Laiq Khan & Saghir Ahmad & Sidra Mumtaz & Rabiah Badar, 2020. "Nonlinear adaptive NeuroFuzzy feedback linearization based MPPT control schemes for photovoltaic system in microgrid," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-36, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Awais & Laiq Khan & Saghir Ahmad & Mohsin Jamil, 2021. "Feedback-Linearization-Based Fuel-Cell Adaptive-Control Paradigm in a Microgrid Using a Wavelet-Entrenched NeuroFuzzy Framework," Energies, MDPI, vol. 14(7), pages 1-17, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0260480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.