IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0260025.html
   My bibliography  Save this article

Using data envelopment analysis to perform benchmarking in intensive care units

Author

Listed:
  • Bianca B P Antunes
  • Leonardo S L Bastos
  • Silvio Hamacher
  • Fernando A Bozza

Abstract

Background: Studies using Data Envelopment Analysis to benchmark Intensive Care Units (ICUs) are scarce. Previous studies have focused on comparing efficiency using only performance metrics, without accounting for resources. Hence, we aimed to perform a benchmarking analysis of ICUs using data envelopment analysis. Methods: We performed a retrospective analysis on observational data of patients admitted to ICUs in Brazil (ORCHESTRA Study). The outputs in our data envelopment analysis model were the performance metrics: Standardized Mortality Ratio (SMR) and Standardized Resource Use (SRU); whereas the inputs consisted of three groups of variables that represented staffing patterns, structure, and strain, thus resulting in three models. We compared efficient and non-efficient units for each model. In addition, we compared our results to the efficiency matrix method and presented targets to each non-efficient unit. Results: We performed benchmarking in 93 ICUs and 129,680 patients. The median age was 64 years old, and mortality was 12%. Median SMR was 1.00 [interquartile range (IQR): 0.79–1.21] and SRU was 1.15 [IQR: 0.95–1.56]. Efficient units presented lower median physicians per bed ratio (1.44 [IQR: 1.18–1.88] vs. 1.7 [IQR: 1.36–2.00]) and nursing workload (168 hours [IQR: 168–291] vs 396 hours [IQR: 336–672]) but higher nurses per bed ratio (2.02 [1.16–2.48] vs. 1.71 [1.43–2.36]) compared to non-efficient units. Units from for-profit hospitals and specialized ICUs presented the best efficiency scores. Our results were mostly in line with the efficiency matrix method: the efficiency units in our models were mostly in the “most efficient” quadrant. Conclusion: Data envelopment analysis provides managers the information needed to identify not only the outcomes to be achieved but what are the levels of resources needed to provide efficient care. Different perspectives can be achieved depending on the chosen variables. Its use jointly with the efficiency matrix can provide deeper understanding of ICU performance and efficiency.

Suggested Citation

  • Bianca B P Antunes & Leonardo S L Bastos & Silvio Hamacher & Fernando A Bozza, 2021. "Using data envelopment analysis to perform benchmarking in intensive care units," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-13, November.
  • Handle: RePEc:plo:pone00:0260025
    DOI: 10.1371/journal.pone.0260025
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260025
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0260025&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0260025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diogo Ferreira & Rui Cunha Marques, 2018. "Identifying congestion levels, sources and determinants on intensive care units: the Portuguese case," Health Care Management Science, Springer, vol. 21(3), pages 348-375, September.
    2. Tsekouras, Kostas & Papathanassopoulos, Fotis & Kounetas, Kostas & Pappous, Giorgos, 2010. "Does the adoption of new technology boost productive efficiency in the public sector? The case of ICUs system," International Journal of Production Economics, Elsevier, vol. 128(1), pages 427-433, November.
    3. Bruce Hollingsworth & P.J. Dawson & N. Maniadakis, 1999. "Efficiency measurement of health care: a review of non‐parametric methods and applications," Health Care Management Science, Springer, vol. 2(3), pages 161-172, July.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    6. Laura Botega & Mônica Viegas Andrade & Gilvan Ramalho Guedes, 2020. "Brazilian hospitals’ performance: an assessment of the unified health system (SUS)," Health Care Management Science, Springer, vol. 23(3), pages 443-452, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhichao Wang & Bao Hoang Nguyen & Valentin Zelenyuk, 2024. "Performance analysis of hospitals in Australia and its peers: a systematic and critical review," Journal of Productivity Analysis, Springer, vol. 62(2), pages 139-173, October.
    2. Halkos, George & Tzeremes, Nickolaos, 2008. "Measuring regional public health provision," MPRA Paper 23762, University Library of Munich, Germany.
    3. César Salazar & Roberto Cárdenas-Retamal & Marcela Jaime, 2023. "Environmental efficiency in the salmon industry—an exploratory analysis around the 2007 ISA virus outbreak and subsequent regulations in Chile," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8107-8135, August.
    4. Juan Du & Justin Wang & Yao Chen & Shin-Yi Chou & Joe Zhu, 2014. "Incorporating health outcomes in Pennsylvania hospital efficiency: an additive super-efficiency DEA approach," Annals of Operations Research, Springer, vol. 221(1), pages 161-172, October.
    5. Leonidas Sotirios Kyrgiakos & Georgios Kleftodimos & George Vlontzos & Panos M. Pardalos, 2023. "A systematic literature review of data envelopment analysis implementation in agriculture under the prism of sustainability," Operational Research, Springer, vol. 23(1), pages 1-38, March.
    6. Filipe Amado, Carla Alexandra & Dyson, Robert G., 2008. "On comparing the performance of primary care providers," European Journal of Operational Research, Elsevier, vol. 185(3), pages 915-932, March.
    7. Halkos, George E. & Aslanidis, Panagiotis – Stavros C., 2023. "Sustainable energy development in an era of geopolitical multi-crisis. Applying productivity indices within institutional framework," Resources Policy, Elsevier, vol. 85(PB).
    8. Shih-Heng Yu & Chia-Wei Hsu, 2020. "A unified extension of super-efficiency in additive data envelopment analysis with integer-valued inputs and outputs: an application to a municipal bus system," Annals of Operations Research, Springer, vol. 287(1), pages 515-535, April.
    9. Kouhei Kikuchi & Soushi Suzuki & Peter Nijkamp, 2024. "Bullying Among Pupils at School and a Country’s Educational System: An Efficiency Evaluation of Educational Performance in Europe by Means of an Extended Data Envelopment Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 174(1), pages 249-280, August.
    10. Zhiguang ZHANG & Haiqing HU & Winston T. LIN, 2019. "Analyzing the Impacts of Unobserved National Characteristics on Economic Performance of Information Technology based on a Partial Adjustment Approach With Dynamic and Variable Speed of Adjustment," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 128-142, March.
    11. Antunes, Jorge Junio Moreira & Neves, Juliana Campos & Elmor, Larissa Rosa Carneiro & Araujo, Michel Fontaine Reis De & Wanke, Peter Fernandes & Tan, Yong, 2023. "A new perspective on the U.S. energy efficiency: The political context," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    12. Alexandra Sintori & Penelope Gouta & Vasilia Konstantidelli & Irene Tzouramani, 2024. "Eco-Efficiency of Olive Farms across Diversified Ecological Farming Approaches," Land, MDPI, vol. 13(1), pages 1-19, January.
    13. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    14. Claudio Pinto, 2014. "Efficiency comparison for directly managed public hospitals for different geographical area in Italy," Working papers 5, Società Italiana di Economia Pubblica.
    15. Leleu, Hervé & Moises, James & Valdmanis, Vivian, 2012. "Optimal productive size of hospital's intensive care units," International Journal of Production Economics, Elsevier, vol. 136(2), pages 297-305.
    16. Dyckhoff, Harald & Souren, Rainer, 2022. "Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review," European Journal of Operational Research, Elsevier, vol. 297(3), pages 795-816.
    17. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    18. Chowdhury, Hedayet & Zelenyuk, Valentin, 2016. "Performance of hospital services in Ontario: DEA with truncated regression approach," Omega, Elsevier, vol. 63(C), pages 111-122.
    19. Kim, Nam Hyok & He, Feng & Kwon, O Chol, 2023. "Combining common-weights DEA window with the Malmquist index: A case of China’s iron and steel industry," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    20. Miryam Daoud Marrakchi & Hédi Essid, 2019. "Efficiency Assessment of Tunisian Public hospitals Using Data Envelopment Analysis (DEA)," Working Papers 1291, Economic Research Forum, revised 2019.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0260025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.