IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0259536.html
   My bibliography  Save this article

Development of an expected possession value model to analyse team attacking performances in rugby league

Author

Listed:
  • Thomas Sawczuk
  • Anna Palczewska
  • Ben Jones

Abstract

This study aimed to evaluate team attacking performances in rugby league via expected possession value (EPV) models. Location data from 59,233 plays in 180 Super League matches across the 2019 Super League season were used. Six EPV models were generated using arbitrary zone sizes (EPV-308 and EPV-77) or aggregated according to the total zone value generated during a match (EPV-37, EPV-19, EPV-13 and EPV-9). Attacking sets were considered as Markov Chains, allowing the value of each zone visited to be estimated based on the outcome of the possession. The Kullback-Leibler Divergence was used to evaluate the reproducibility of the value generated from each zone (the reward distribution) by teams between matches. Decreasing the number of zones improved the reproducibility of reward distributions between matches but reduced the variation in zone values. After six previous matches, the subsequent match’s zones had been visited on 95% or more occasions for EPV-19 (95±4%), EPV-13 (100±0%) and EPV-9 (100±0%). The KL Divergence values were infinity (EPV-308), 0.52±0.05 (EPV-77), 0.37±0.03 (EPV-37), 0.20±0.02 (EPV-19), 0.13±0.02 (EPV-13) and 0.10±0.02 (EPV-9). This study supports the use of EPV-19 and EPV-13, but not EPV-9 (too little variation in zone values), to evaluate team attacking performance in rugby league.

Suggested Citation

  • Thomas Sawczuk & Anna Palczewska & Ben Jones, 2021. "Development of an expected possession value model to analyse team attacking performances in rugby league," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
  • Handle: RePEc:plo:pone00:0259536
    DOI: 10.1371/journal.pone.0259536
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259536
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0259536&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0259536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nimai Parmar & Nic James & Gary Hearne & Ben Jones, 2018. "Using principal component analysis to develop performance indicators in professional rugby league," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 18(6), pages 938-949, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Pino-Ortega & Daniel Rojas-Valverde & Carlos D. Gómez-Carmona & Markel Rico-González, 2021. "Training Design, Performance Analysis, and Talent Identification—A Systematic Review about the Most Relevant Variables through the Principal Component Analysis in Soccer, Basketball, and Rugby," IJERPH, MDPI, vol. 18(5), pages 1-19, March.
    2. Dziadek Bartosz & Iskra Janusz & Mendyka Wiesław & Przednowek Krzysztof, 2022. "Principal Component Analysis in the Study of the Structure of Decathlon at Different Stages of Sports Career," Polish Journal of Sport and Tourism, Sciendo, vol. 29(4), pages 21-28, December.
    3. José M. Gamonales & Kiko León & Daniel Rojas-Valverde & Braulio Sánchez-Ureña & Jesús Muñoz-Jiménez, 2021. "Data Mining to Select Relevant Variables Influencing External and Internal Workload of Elite Blind 5-a-Side Soccer," IJERPH, MDPI, vol. 18(6), pages 1-11, March.
    4. Daniel Rojas-Valverde & José Pino-Ortega & Carlos D. Gómez-Carmona & Markel Rico-González, 2020. "A Systematic Review of Methods and Criteria Standard Proposal for the Use of Principal Component Analysis in Team’s Sports Science," IJERPH, MDPI, vol. 17(23), pages 1-13, November.
    5. Alexandru Nicolae Ungureanu & Corrado Lupo & Paolo Riccardo Brustio, 2021. "A Machine Learning Approach to Analyze Home Advantage during COVID-19 Pandemic Period with Regards to Margin of Victory and to Different Tournaments in Professional Rugby Union Competitions," IJERPH, MDPI, vol. 18(23), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0259536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.