Author
Listed:
- Ilshat Khasanshin
- Aleksey Osipov
Abstract
The work was aimed to develop an optimal model of a straight punch in boxing based on an artificial neural network (ANN) in the form of a multilayer perceptron, as well as to develop a technique for improving the technique of punches in boxing based on feedback, when each punch delivered by a boxer was compared with the optimal model. The architecture of the neural network optimal punch model included an input layer of 600 nodes—the values of absolute accelerations and angular velocities, four hidden ones, as well as a binary output layer (the best and not the best punch). To measure accelerations and angular velocities, inertial measuring devices were attached to the boxers’ wrists. Highly qualified participated in the data set for the development of the optimal model. The best punches were chosen according to the criteria of strength and speed. The punch force was determined using a boxing pad with the function of measuring the punch force. In order to be able to compare punches, a unified parameter was developed, called the punch quality, which is equal to the product of the effective force and the punch speed. To study the effects of biofeedback, the boxing pads were equipped with five LEDs. The more LEDs were turned on, the more the punch corresponded to the optimal model. As a result of the study, an almost linear relationship was found between the quality of the punch of entry-level boxers and the optimal model. The use of feedback allowed for an increase in the quality of punches from 11 to 25%, which is on average twice as high as in the group where the feedback method was not used. Studies have shown that it is possible to develop an optimal punch model. According to the degree of compliance with this model, you can evaluate and train boxers in the technique.
Suggested Citation
Ilshat Khasanshin & Aleksey Osipov, 2021.
"Using an artificial neural network to develop an optimal model of straight punch in boxing and training in punch techniques based on this model and real-time feedback,"
PLOS ONE, Public Library of Science, vol. 16(11), pages 1-17, November.
Handle:
RePEc:plo:pone00:0259457
DOI: 10.1371/journal.pone.0259457
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0259457. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.