Author
Listed:
- Mohammad Hamasha
- Sa’d Hamasha
- Faisal Aqlan
- Osama Almeanazel
Abstract
In this paper, a Markovian model is constructed to test a flexible manufacturing cell’s (FMC) performance. The considered FMC includes a conveyer belt, robot, and n machines. The conveyer belt delivers the working part to the robot, and the robot picks it up and loads it onto the machines. The movement of a working part from one step to the next depends on the availability of the tool in the next step (i.e., conveyer belt, robot, and machine). Any machine is assumed to potentially fail during the processing time as a result of high loading stresses. First, a Markovian model is constructed for single-machine and double-machine FMCs. Then, a generalized FMC with an n-machine is constructed. The introduced model is illustrated with two numerical examples for both the single- and triple-machine. The Markov chain model can be used to estimate the FMC performance measures (i.e., overall utilization of machines and production rate). It is used to analyze the response of these measures under varying parameters (i.e., conveyor belt delivery rate, robot loading rate, processing rate of a machine, failure rate of a machine, and down machines’ repairing rate). Moreover, an economic model based on the Markov chain model is introduced to analyze the FMC’s net profit under these varying parameters.
Suggested Citation
Mohammad Hamasha & Sa’d Hamasha & Faisal Aqlan & Osama Almeanazel, 2022.
"Markovian analysis of unreliable multi-machine flexible manufacturing cell,"
PLOS ONE, Public Library of Science, vol. 17(2), pages 1-22, February.
Handle:
RePEc:plo:pone00:0259247
DOI: 10.1371/journal.pone.0259247
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0259247. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.