Author
Listed:
- Patrick Pietzonka
- Erik Brorson
- William Bankes
- Michael E Cates
- Robert L Jack
- Ronojoy Adhikari
Abstract
We apply Bayesian inference methods to a suite of distinct compartmental models of generalised SEIR type, in which diagnosis and quarantine are included via extra compartments. We investigate the evidence for a change in lethality of COVID-19 in late autumn 2020 in the UK, using age-structured, weekly national aggregate data for cases and mortalities. Models that allow a (step-like or graded) change in infection fatality rate (IFR) have consistently higher model evidence than those without. Moreover, they all infer a close to two-fold increase in IFR. This value lies well above most previously available estimates. However, the same models consistently infer that, most probably, the increase in IFR preceded the time window during which variant B.1.1.7 (alpha) became the dominant strain in the UK. Therefore, according to our models, the caseload and mortality data do not offer unequivocal evidence for higher lethality of a new variant. We compare these results for the UK with similar models for Germany and France, which also show increases in inferred IFR during the same period, despite the even later arrival of new variants in those countries. We argue that while the new variant(s) may be one contributing cause of a large increase in IFR in the UK in autumn 2020, other factors, such as seasonality, or pressure on health services, are likely to also have contributed.
Suggested Citation
Patrick Pietzonka & Erik Brorson & William Bankes & Michael E Cates & Robert L Jack & Ronojoy Adhikari, 2021.
"Bayesian inference across multiple models suggests a strong increase in lethality of COVID-19 in late 2020 in the UK,"
PLOS ONE, Public Library of Science, vol. 16(11), pages 1-18, November.
Handle:
RePEc:plo:pone00:0258968
DOI: 10.1371/journal.pone.0258968
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0258968. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.