Author
Abstract
Bayes’ Theorem imposes inevitable limitations on the accuracy of screening tests by tying the test’s predictive value to the disease prevalence. The aforementioned limitation is independent of the adequacy and make-up of the test and thus implies inherent Bayesian limitations to the screening process itself. As per the WHO’s Wilson − Jungner criteria, one of the prerequisite steps before undertaking screening is to ensure that a treatment for the condition screened for exists. However, when applying screening programs in closed systems, a paradox, henceforth termed the “screening paradox”, ensues. If a disease process is screened for and subsequently treated, its prevalence would drop in the population, which as per Bayes’ theorem, would make the tests’ predictive value drop in return. Put another way, a very powerful screening test would, by performing and succeeding at the very task it was developed to do, paradoxically reduce its ability to correctly identify individuals with the disease it screens for in the future—over some time t. In this manuscript, we explore the mathematical model which formalizes said screening paradox and explore its implications for population level screening programs. In particular, we define the number of positive test iterations (PTI) needed to reverse the effects of the paradox. Given their theoretical nature, clinical application of the concepts herein reported need validation prior to implementation. Meanwhile, an understanding of how the dynamics of prevalence can affect the PPV over time can help inform clinicians as to the reliability of a screening test’s results.
Suggested Citation
Jacques Balayla, 2021.
"On the formalism of the screening paradox,"
PLOS ONE, Public Library of Science, vol. 16(9), pages 1-13, September.
Handle:
RePEc:plo:pone00:0256645
DOI: 10.1371/journal.pone.0256645
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0256645. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.