Author
Listed:
- Andrew Salch
- Adam Regalski
- Hassan Abdallah
- Raviteja Suryadevara
- Michael J Catanzaro
- Vaibhav A Diwadkar
Abstract
fMRI is the preeminent method for collecting signals from the human brain in vivo, for using these signals in the service of functional discovery, and relating these discoveries to anatomical structure. Numerous computational and mathematical techniques have been deployed to extract information from the fMRI signal. Yet, the application of Topological Data Analyses (TDA) remain limited to certain sub-areas such as connectomics (that is, with summarized versions of fMRI data). While connectomics is a natural and important area of application of TDA, applications of TDA in the service of extracting structure from the (non-summarized) fMRI data itself are heretofore nonexistent. “Structure” within fMRI data is determined by dynamic fluctuations in spatially distributed signals over time, and TDA is well positioned to help researchers better characterize mass dynamics of the signal by rigorously capturing shape within it. To accurately motivate this idea, we a) survey an established method in TDA (“persistent homology”) to reveal and describe how complex structures can be extracted from data sets generally, and b) describe how persistent homology can be applied specifically to fMRI data. We provide explanations for some of the mathematical underpinnings of TDA (with expository figures), building ideas in the following sequence: a) fMRI researchers can and should use TDA to extract structure from their data; b) this extraction serves an important role in the endeavor of functional discovery, and c) TDA approaches can complement other established approaches toward fMRI analyses (for which we provide examples). We also provide detailed applications of TDA to fMRI data collected using established paradigms, and offer our software pipeline for readers interested in emulating our methods. This working overview is both an inter-disciplinary synthesis of ideas (to draw researchers in TDA and fMRI toward each other) and a detailed description of methods that can motivate collaborative research.
Suggested Citation
Andrew Salch & Adam Regalski & Hassan Abdallah & Raviteja Suryadevara & Michael J Catanzaro & Vaibhav A Diwadkar, 2021.
"From mathematics to medicine: A practical primer on topological data analysis (TDA) and the development of related analytic tools for the functional discovery of latent structure in fMRI data,"
PLOS ONE, Public Library of Science, vol. 16(8), pages 1-33, August.
Handle:
RePEc:plo:pone00:0255859
DOI: 10.1371/journal.pone.0255859
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0255859. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.