Author
Listed:
- Moritz Knolle
- Georgios Kaissis
- Friederike Jungmann
- Sebastian Ziegelmayer
- Daniel Sasse
- Marcus Makowski
- Daniel Rueckert
- Rickmer Braren
Abstract
The success of deep learning in recent years has arguably been driven by the availability of large datasets for training powerful predictive algorithms. In medical applications however, the sensitive nature of the data limits the collection and exchange of large-scale datasets. Privacy-preserving and collaborative learning systems can enable the successful application of machine learning in medicine. However, collaborative protocols such as federated learning require the frequent transfer of parameter updates over a network. To enable the deployment of such protocols to a wide range of systems with varying computational performance, efficient deep learning architectures for resource-constrained environments are required. Here we present MoNet, a small, highly optimized neural-network-based segmentation algorithm leveraging efficient multi-scale image features. MoNet is a shallow, U-Net-like architecture based on repeated, dilated convolutions with decreasing dilation rates. We apply and test our architecture on the challenging clinical tasks of pancreatic segmentation in computed tomography (CT) images as well as brain tumor segmentation in magnetic resonance imaging (MRI) data. We assess our model’s segmentation performance and demonstrate that it provides performance on par with compared architectures while providing superior out-of-sample generalization performance, outperforming larger architectures on an independent validation set, while utilizing significantly fewer parameters. We furthermore confirm the suitability of our architecture for federated learning applications by demonstrating a substantial reduction in serialized model storage requirement as a surrogate for network data transfer. Finally, we evaluate MoNet’s inference latency on the central processing unit (CPU) to determine its utility in environments without access to graphics processing units. Our implementation is publicly available as free and open-source software.
Suggested Citation
Moritz Knolle & Georgios Kaissis & Friederike Jungmann & Sebastian Ziegelmayer & Daniel Sasse & Marcus Makowski & Daniel Rueckert & Rickmer Braren, 2021.
"Efficient, high-performance semantic segmentation using multi-scale feature extraction,"
PLOS ONE, Public Library of Science, vol. 16(8), pages 1-11, August.
Handle:
RePEc:plo:pone00:0255397
DOI: 10.1371/journal.pone.0255397
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0255397. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.