Author
Listed:
- Joaquin Gabaldon
- Ding Zhang
- Lisa Lauderdale
- Lance Miller
- Matthew Johnson-Roberson
- Kira Barton
- K Alex Shorter
Abstract
This research presents a framework to enable computer-automated observation and monitoring of bottlenose dolphins (Tursiops truncatus) in a zoo environment. The resulting approach enables detailed persistent monitoring of the animals that is not possible using manual annotation methods. Fixed overhead cameras were used to opportunistically collect ∼100 hours of observations, recorded over multiple days, including time both during and outside of formal training sessions, to demonstrate the viability of the framework. Animal locations were estimated using convolutional neural network (CNN) object detectors and Kalman filter post-processing. The resulting animal tracks were used to quantify habitat use and animal kinematics. Additionally, Kolmogorov-Smirnov analyses of the swimming kinematics were used in high-level behavioral mode classification. The object detectors achieved a minimum Average Precision of 0.76, and the post-processed results yielded 1.24 × 107 estimated dolphin locations. Animal kinematic diversity was found to be lowest in the morning and peaked immediately before noon. Regions of the zoo habitat displaying the highest activity levels correlated to locations associated with animal care specialists, conspecifics, or enrichment. The work presented here demonstrates that CNN object detection is viable for large-scale marine mammal tracking, and results from the proposed framework will enable future research that will offer new insights into dolphin behavior, biomechanics, and how environmental context affects movement and activity.
Suggested Citation
Joaquin Gabaldon & Ding Zhang & Lisa Lauderdale & Lance Miller & Matthew Johnson-Roberson & Kira Barton & K Alex Shorter, 2022.
"Computer-vision object tracking for monitoring bottlenose dolphin habitat use and kinematics,"
PLOS ONE, Public Library of Science, vol. 17(2), pages 1-23, February.
Handle:
RePEc:plo:pone00:0254323
DOI: 10.1371/journal.pone.0254323
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0254323. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.