IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0253711.html
   My bibliography  Save this article

A novel nonlinear creep model based on damage characteristics of mudstone strength parameters

Author

Listed:
  • Bin Hu
  • Aneng Cui
  • Kai Cui
  • Yang Liu
  • Jing Li

Abstract

Mudstone interlayer is a weak layer in rock engineering. When it is subjected to continuous stress higher than its damage threshold, due to the dislocation of particles in mudstone crystals and the expansion of cracks, mudstone strength is gradually damaged and deteriorated and the strain gradually increases, thus accelerating the phenomenon of creep damage. In order to describe the characteristics of the whole process of mudstone aging deformation, based on the damage evolution of strength parameters (cohesion and internal friction coefficient) with stress and time in mudstone creep tests, a novel damage nonlinear viscoelastoplastic body (D-NVPB) is proposed through improving traditional plastic element. D-NVPB describes the nonlinear characteristics of the accelerated creep stage of mudstone. With the element combination method, D-NVPB is connected with the Burgers model in series to form a new nonlinear damage creep model (D-NVEP model). The analysis results of creep characteristics theoretically verified the rationality of the model in describing the instantaneous elasticity, viscoelasticity, and nonlinear viscoplastic characteristics of the complete creep curve of mudstone. With the data obtained in the uniaxial compression creep test of mudstone under the action of a stress level of 14 MPa, based on the Levenberg-Marquardt nonlinear least squares method, the fitting calculation was performed through piecewise fitting and overall fitting. The correlation coefficient was 0.9909, which verified the applicability of the model. The obtained model parameters by the identification were used to predict the mudstone creep curve under the stress levels of 13 MPa and 15 MPa. The good prediction results further verified the feasibility of the model. Compared with the traditional creep model, the D-NVEP model can better describe the nonlinear characteristics of the accelerated creep stage and quantitatively display the strength damage evolution process of rock in the creep failure process.

Suggested Citation

  • Bin Hu & Aneng Cui & Kai Cui & Yang Liu & Jing Li, 2021. "A novel nonlinear creep model based on damage characteristics of mudstone strength parameters," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
  • Handle: RePEc:plo:pone00:0253711
    DOI: 10.1371/journal.pone.0253711
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253711
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0253711&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0253711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0253711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.