Author
Listed:
- Patrick Saunders-Hastings
- Sze Wing Heong
- Jenny Srichaikul
- Hui-Lee Wong
- Azadeh Shoaibi
- Kinnera Chada
- Timothy A Burrell
- Graça M Dores
Abstract
Background: Healthcare administrative claims data hold value for monitoring drug safety and assessing drug effectiveness. The U.S. Food and Drug Administration Biologics Effectiveness and Safety Initiative (BEST) is expanding its analytical capacity by developing claims-based definitions—referred to as algorithms—for populations and outcomes of interest. Acute myocardial infarction (AMI) was of interest due to its potential association with select biologics and the lack of an externally validated International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) algorithm. Objective: Develop and apply an ICD-10-CM-based algorithm in a U.S. administrative claims database to identify and characterize AMI populations. Methods: A comprehensive literature review was conducted to identify validated AMI algorithms. Building on prior published methodology and consistent application of ICD-9-CM codes, an ICD-10-CM algorithm was developed via forward-backward mapping using General Equivalence Mappings and refined with clinical input. An AMI population was then identified in the IBM® MarketScan® Research Databases and characterized using descriptive statistics. Results and discussion: Between 2014–2017, 2.83–3.16 individuals/1,000 enrollees/year received ≥1 AMI diagnosis in any healthcare setting. The 2015 transition to ICD-10-CM did not result in a substantial change in the proportion of patients identified. Average patient age at first AMI diagnosis was 64.9 years, and 61.4% of individuals were male. Unspecified chest pain, hypertension, and coronary atherosclerosis of native coronary vessel/artery were most commonly reported within one day of AMI diagnosis. Electrocardiograms were the most common medical procedure and beta-blockers were the most commonly ordered cardiac medication in the one day before to 14 days following AMI diagnosis. The mean length of inpatient stay was 5.6 days (median 3 days; standard deviation 7.9 days). Findings from this ICD-10-CM-based AMI study were internally consistent with ICD-9-CM-based findings and externally consistent with ICD-9-CM-based studies, suggesting that this algorithm is ready for validation in future studies.
Suggested Citation
Patrick Saunders-Hastings & Sze Wing Heong & Jenny Srichaikul & Hui-Lee Wong & Azadeh Shoaibi & Kinnera Chada & Timothy A Burrell & Graça M Dores, 2021.
"Acute myocardial infarction: Development and application of an ICD-10-CM-based algorithm to a large U.S. healthcare claims-based database,"
PLOS ONE, Public Library of Science, vol. 16(7), pages 1-18, July.
Handle:
RePEc:plo:pone00:0253580
DOI: 10.1371/journal.pone.0253580
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0253580. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.