IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0253307.html
   My bibliography  Save this article

A mutual information based R-vine copula strategy to estimate VaR in high frequency stock market data

Author

Listed:
  • Charu Sharma
  • Niteesh Sahni

Abstract

In this paper, we explore mutual information based stock networks to build regular vine copula structure on high frequency log returns of stocks and use it for the estimation of Value at Risk (VaR) of a portfolio of stocks. Our model is a data driven model that learns from a high frequency time series data of log returns of top 50 stocks listed on the National Stock Exchange (NSE) in India for the year 2014. The Ljung-Box test revealed the presence of Autocorrelation as well as Heteroscedasticity in the underlying time series data. Analysing the goodness of fit of a number of variants of the GARCH model on each working day of the year 2014, that is, 229 days in all, it was observed that ARMA(1,1)-EGARCH(1,1) demonstrated the best fit. The joint probability distribution of the portfolio is computed by constructed an R-Vine copula structure on the data with the mutual information guided minimum spanning tree as the key building block. The joint PDF is then fed into the Monte-Carlo simulation procedure to compute the VaR. If we replace the mutual information by the Kendall’s Tau in the construction of the R-Vine copula structure, the resulting VaR estimations were found to be inferior suggesting the presence of non-linear relationships among stock returns.

Suggested Citation

  • Charu Sharma & Niteesh Sahni, 2021. "A mutual information based R-vine copula strategy to estimate VaR in high frequency stock market data," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-16, June.
  • Handle: RePEc:plo:pone00:0253307
    DOI: 10.1371/journal.pone.0253307
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253307
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0253307&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0253307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongjun Zeng & Ran Lu & Abdullahi D. Ahmed, 2023. "Dynamic dependencies and return connectedness among stock, gold and Bitcoin markets: Evidence from South Asia and China," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 18(1), pages 49-87, March.
    2. Emanuel Sommer & Karoline Bax & Claudia Czado, 2022. "Vine Copula based portfolio level conditional risk measure forecasting," Papers 2208.09156, arXiv.org, revised Feb 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0253307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.