Author
Listed:
- Laurence A Clarfeld
- Robert Gramling
- Donna M Rizzo
- Margaret J Eppstein
Abstract
Conversation has been a primary means for the exchange of information since ancient times. Understanding patterns of information flow in conversations is a critical step in assessing and improving communication quality. In this paper, we describe COnversational DYnamics Model (CODYM) analysis, a novel approach for studying patterns of information flow in conversations. CODYMs are Markov Models that capture sequential dependencies in the lengths of speaker turns. The proposed method is automated and scalable, and preserves the privacy of the conversational participants. The primary function of CODYM analysis is to quantify and visualize patterns of information flow, concisely summarized over sequential turns from one or more conversations. Our approach is general and complements existing methods, providing a new tool for use in the analysis of any type of conversation. As an important first application, we demonstrate the model on transcribed conversations between palliative care clinicians and seriously ill patients. These conversations are dynamic and complex, taking place amidst heavy emotions, and include difficult topics such as end-of-life preferences and patient values. We use CODYMs to identify normative patterns of information flow in serious illness conversations, show how these normative patterns change over the course of the conversations, and show how they differ in conversations where the patient does or doesn’t audibly express anger or fear. Potential applications of CODYMs range from assessment and training of effective healthcare communication to comparing conversational dynamics across languages, cultures, and contexts with the prospect of identifying universal similarities and unique “fingerprints” of information flow.
Suggested Citation
Laurence A Clarfeld & Robert Gramling & Donna M Rizzo & Margaret J Eppstein, 2021.
"A general model of conversational dynamics and an example application in serious illness communication,"
PLOS ONE, Public Library of Science, vol. 16(7), pages 1-19, July.
Handle:
RePEc:plo:pone00:0253124
DOI: 10.1371/journal.pone.0253124
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0253124. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.