IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0252756.html
   My bibliography  Save this article

Efficient energy and completion time for dependent task computation offloading algorithm in industry 4.0

Author

Listed:
  • Rabab Farouk Abdel-Kader
  • Noha Emad El-Sayad
  • Rawya Yehia Rizk

Abstract

Rapid technological development has revolutionized the industrial sector. Internet of Things (IoT) started to appear in many fields, such as health care and smart cities. A few years later, IoT was supported by industry, leading to what is called Industry 4.0. In this paper, a cloud-assisted fog-networking architecture is implemented in an IoT environment with a three-layer network. An efficient energy and completion time for dependent task computation offloading (ET-DTCO) algorithm is proposed, and it considers two quality-of-service (QoS) parameters: efficient energy and completion time offloading for dependent tasks in Industry 4.0. The proposed solution employs the Firefly algorithm to optimize the process of the selection-offloading computing mode and determine the optimal solution for performing tasks locally or offloaded to a fog or cloud considering the task dependency. Moreover, the proposed algorithm is compared with existing techniques. Simulation results proved that the proposed ET-DTCO algorithm outperforms other offloading algorithms in minimizing energy consumption and completion time while enhancing the overall efficiency of the system.

Suggested Citation

  • Rabab Farouk Abdel-Kader & Noha Emad El-Sayad & Rawya Yehia Rizk, 2021. "Efficient energy and completion time for dependent task computation offloading algorithm in industry 4.0," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-22, June.
  • Handle: RePEc:plo:pone00:0252756
    DOI: 10.1371/journal.pone.0252756
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252756
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0252756&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0252756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lina Zhang & Liqiang Liu & Xin-She Yang & Yuntao Dai, 2016. "A Novel Hybrid Firefly Algorithm for Global Optimization," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javid Misirli & Emiliano Casalicchio, 2023. "An Analysis of Methods and Metrics for Task Scheduling in Fog Computing," Future Internet, MDPI, vol. 16(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivona Brajević & Jelena Ignjatović, 2019. "An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2545-2574, August.
    2. B. Koti Reddy & Amit Kumar Singh, 2021. "Optimal Operation of a Photovoltaic Integrated Captive Cogeneration Plant with a Utility Grid Using Optimization and Machine Learning Prediction Methods," Energies, MDPI, vol. 14(16), pages 1-28, August.
    3. Dinesh Karunanidy & Subramanian Ramalingam & Ankur Dumka & Rajesh Singh & Mamoon Rashid & Anita Gehlot & Sultan S. Alshamrani & Ahmed Saeed AlGhamdi, 2022. "JMA: Nature-Inspired Java Macaque Algorithm for Optimization Problem," Mathematics, MDPI, vol. 10(5), pages 1-28, February.
    4. Javaid Ali & Muhammad Saeed & Muhammad Farhan Tabassam & Shaukat Iqbal, 2019. "Controlled showering optimization algorithm: an intelligent tool for decision making in global optimization," Computational and Mathematical Organization Theory, Springer, vol. 25(2), pages 132-164, June.
    5. Kutlu Onay, Funda, 2023. "A novel improved chef-based optimization algorithm with Gaussian random walk-based diffusion process for global optimization and engineering problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 195-223.
    6. Umesh Balande & Deepti Shrimankar, 2020. "An oracle penalty and modified augmented Lagrangian methods with firefly algorithm for constrained optimization problems," Operational Research, Springer, vol. 20(2), pages 985-1010, June.
    7. Adnan Yousaf & Rao Muhammad Asif & Mustafa Shakir & Ateeq Ur Rehman & Fawaz Alassery & Habib Hamam & Omar Cheikhrouhou, 2021. "A Novel Machine Learning-Based Price Forecasting for Energy Management Systems," Sustainability, MDPI, vol. 13(22), pages 1-26, November.
    8. Ivona Brajević & Predrag S. Stanimirović & Shuai Li & Xinwei Cao & Ameer Tamoor Khan & Lev A. Kazakovtsev, 2022. "Hybrid Sine Cosine Algorithm for Solving Engineering Optimization Problems," Mathematics, MDPI, vol. 10(23), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0252756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.