Author
Listed:
- Xuecong Zhang
- Haolang Shen
- Zhihan Lv
Abstract
The purposes are to improve the server deployment capability under Mobile Edge Computing (MEC), reduce the time delay and energy consumption of terminals during task execution, and improve user service quality. After the server deployment problems under traditional edge computing are analyzed and researched, a task resource allocation model based on multi-stage is proposed to solve the communication problem between different supporting devices. This model establishes a combined task resource allocation and task offloading method and optimizes server execution by utilizing the time delay and energy consumption required for task execution and comprehensively considering the restriction processes of task offloading, partition, and transmission. For the MEC process that supports dense networks, a multi-hybrid intelligent algorithm based on energy consumption optimization is proposed. The algorithm converts the original problem into a power allocation problem via a heuristic model. Simultaneously, it determines the appropriate allocation strategy through distributed planning, duality, and upper bound replacement. Results demonstrate that the proposed multi-stage combination-based service deployment optimization model can solve the problem of minimizing the maximum task execution energy consumption combined with task offloading and resource allocation effectively. The algorithm has good performance in handling user fairness and the worst-case task execution energy consumption. The proposed hybrid intelligent algorithm can partition tasks into task offloading sub-problems and resource allocation sub-problems, meeting the user’s task execution needs. A comparison with the latest algorithm also verifies the model’s performance and effectiveness. The above results can provide a theoretical basis and some practical ideas for server deployment and applications under MEC.
Suggested Citation
Xuecong Zhang & Haolang Shen & Zhihan Lv, 2021.
"Deployment optimization of multi-stage investment portfolio service and hybrid intelligent algorithm under edge computing,"
PLOS ONE, Public Library of Science, vol. 16(6), pages 1-23, June.
Handle:
RePEc:plo:pone00:0252244
DOI: 10.1371/journal.pone.0252244
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0252244. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.