Author
Listed:
- Khalid M Hosny
- Mohamed M Darwish
- Kenli Li
- Ahmad Salah
Abstract
The diagnosis of COVID-19 is of vital demand. Several studies have been conducted to decide whether the chest X-ray and computed tomography (CT) scans of patients indicate COVID-19. While these efforts resulted in successful classification systems, the design of a portable and cost-effective COVID-19 diagnosis system has not been addressed yet. The memory requirements of the current state-of-the-art COVID-19 diagnosis systems are not suitable for embedded systems due to the required large memory size of these systems (e.g., hundreds of megabytes). Thus, the current work is motivated to design a similar system with minimal memory requirements. In this paper, we propose a diagnosis system using a Raspberry Pi Linux embedded system. First, local features are extracted using local binary pattern (LBP) algorithm. Second, the global features are extracted from the chest X-ray or CT scans using multi-channel fractional-order Legendre-Fourier moments (MFrLFMs). Finally, the most significant features (local and global) are selected. The proposed system steps are integrated to fit the low computational and memory capacities of the embedded system. The proposed method has the smallest computational and memory resources,less than the state-of-the-art methods by two to three orders of magnitude, among existing state-of-the-art deep learning (DL)-based methods.
Suggested Citation
Khalid M Hosny & Mohamed M Darwish & Kenli Li & Ahmad Salah, 2021.
"COVID-19 diagnosis from CT scans and chest X-ray images using low-cost Raspberry Pi,"
PLOS ONE, Public Library of Science, vol. 16(5), pages 1-18, May.
Handle:
RePEc:plo:pone00:0250688
DOI: 10.1371/journal.pone.0250688
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0250688. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.