Author
Listed:
- S M Isuru Niroshana
- Xin Zhu
- Keijiro Nakamura
- Wenxi Chen
Abstract
Obstructive sleep apnea (OSA) is a common chronic sleep disorder that disrupts breathing during sleep and is associated with many other medical conditions, including hypertension, coronary heart disease, and depression. Clinically, the standard for diagnosing OSA involves nocturnal polysomnography (PSG). However, this requires expert human intervention and considerable time, which limits the availability of OSA diagnosis in public health sectors. Therefore, electrocardiogram (ECG)-based methods for OSA detection have been proposed to automate the polysomnography procedure and reduce its discomfort. So far, most of the proposed approaches rely on feature engineering, which calls for advanced expert knowledge and experience. This paper proposes a novel fused-image-based technique that detects OSA using only a single-lead ECG signal. In the proposed approach, a convolutional neural network extracts features automatically from images created with one-minute ECG segments. The proposed network comprises 37 layers, including four residual blocks, a dense layer, a dropout layer, and a soft-max layer. In this study, three time–frequency representations, namely the scalogram, the spectrogram, and the Wigner–Ville distribution, were used to investigate the effectiveness of the fused-image-based approach. We found that blending scalogram and spectrogram images further improved the system’s discriminative characteristics. Seventy ECG recordings from the PhysioNet Apnea-ECG database were used to train and evaluate the proposed model using 10-fold cross validation. The results of this study demonstrated that the proposed classifier can perform OSA detection with an average accuracy, recall, and specificity of 92.4%, 92.3%, and 92.6%, respectively, for the fused spectral images.
Suggested Citation
S M Isuru Niroshana & Xin Zhu & Keijiro Nakamura & Wenxi Chen, 2021.
"A fused-image-based approach to detect obstructive sleep apnea using a single-lead ECG and a 2D convolutional neural network,"
PLOS ONE, Public Library of Science, vol. 16(4), pages 1-22, April.
Handle:
RePEc:plo:pone00:0250618
DOI: 10.1371/journal.pone.0250618
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0250618. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.