IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0250271.html
   My bibliography  Save this article

An intelligent cluster optimization algorithm based on Whale Optimization Algorithm for VANETs (WOACNET)

Author

Listed:
  • Ghassan Husnain
  • Shahzad Anwar

Abstract

Vehicular Ad hoc Networks (VANETs) an important category in networking focuses on many applications, such as safety and intelligent traffic management systems. The high node mobility and sparse vehicle distribution (on the road) compromise VANETs network scalability and rapid topology, hence creating major challenges, such as network physical layout formation, unstable links to enable robust, reliable, and scalable vehicle communication, especially in a dense traffic network. This study discusses a novel optimization approach considering transmission range, node density, speed, direction, and grid size during clustering. Whale Optimization Algorithm for Clustering in Vehicular Ad hoc Networks (WOACNET) was introduced to select an optimum cluster head (CH) and was calculated and evaluated based on intelligence and capability. Initially, simulations were performed, Subsequently, rigorous experimentations were conducted on WOACNET. The model was compared and evaluated with state-of-the-art well-established other methods, such as Gray Wolf Optimization (GWO) and Ant Lion Optimization (ALO) employing various performance metrics. The results demonstrate that the developed method performance is well ahead compared to other methods in VANET in terms of cluster head, varying transmission ranges, grid size, and nodes. The developed method results in achieving an overall 46% enhancement in cluster optimization and an F-value of 31.64 compared to other established methods (11.95 and 22.50) consequently, increase in cluster lifetime.

Suggested Citation

  • Ghassan Husnain & Shahzad Anwar, 2021. "An intelligent cluster optimization algorithm based on Whale Optimization Algorithm for VANETs (WOACNET)," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-22, April.
  • Handle: RePEc:plo:pone00:0250271
    DOI: 10.1371/journal.pone.0250271
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250271
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0250271&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0250271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jingrui & Wang, Jiyang & Li, Zhiwu, 2023. "A novel combined forecasting system based on advanced optimization algorithm - A study on optimal interval prediction of wind speed," Energy, Elsevier, vol. 264(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0250271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.