Author
Listed:
- YueQun Wang
- LiYan Dong
- XiaoQuan Jiang
- XinTao Ma
- YongLi Li
- Hao Zhang
Abstract
Since the word2vec model was proposed, many researchers have vectorized the data in the research field based on it. In the field of social network, the Node2Vec model improved on the basis of word2vec can vectorize nodes and edges in social networks, so as to carry out relevant research on social networks, such as link prediction, and community division. However, social network is a network with homogeneous structure. When dealing with heterogeneous networks such as knowledge graph, Node2Vec will lead to inaccurate prediction and unreasonable vector quantization data. Specifically, in the Node2Vec model, the walk strategy for homogeneous networks is not suitable for heterogeneous networks, because the latter has distinguishing features for nodes and edges. In this paper, a Heterogeneous Network vector representation method is proposed based on random walks and Node2Vec, called KG2vec (Heterogeneous Network to Vector) that solves problems related to the inadequate consideration of the full-text semantics and the contextual relations that are encountered by the traditional vector representation of the knowledge graph. First, the knowledge graph is reconstructed and a new random walk strategy is applied. Then, two training models and optimizing strategies are proposed, so that the contextual environment between entities and relations is obtained, semantically providing a full vector representation of the Heterogeneous Network. The experimental results show that the KG2VEC model solves the problem of insufficient context consideration and unsatisfactory results of one-to-many relationship in the vectorization process of the traditional knowledge graph. Our experiments show that KG2vec achieves better performance with higher accuracy than traditional methods.
Suggested Citation
YueQun Wang & LiYan Dong & XiaoQuan Jiang & XinTao Ma & YongLi Li & Hao Zhang, 2021.
"KG2Vec: A node2vec-based vectorization model for knowledge graph,"
PLOS ONE, Public Library of Science, vol. 16(3), pages 1-19, March.
Handle:
RePEc:plo:pone00:0248552
DOI: 10.1371/journal.pone.0248552
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0248552. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.