Author
Listed:
- Hongbo Yan
- Pengbo Zhao
- Zhuang Du
- Yang Xu
- Pei Liu
Abstract
Ultrasound imaging has developed into an indispensable imaging technology in medical diagnosis and treatment applications due to its unique advantages, such as safety, affordability, and convenience. With the development of data information acquisition technology, ultrasound imaging is increasingly susceptible to speckle noise, which leads to defects, such as low resolution, poor contrast, spots, and shadows, which affect the accuracy of physician analysis and diagnosis. To solve this problem, we proposed a frequency division denoising algorithm combining transform domain and spatial domain. First, the ultrasound image was decomposed into a series of sub-modal images using 2D variational mode decomposition (2D-VMD), and adaptively determined 2D-VMD parameter K value based on visual information fidelity (VIF) criterion. Then, an anisotropic diffusion filter was used to denoise low-frequency sub-modal images, and a 3D block matching algorithm (BM3D) was used to reduce noise for high-frequency images with high noise. Finally, each sub-modal image was reconstructed after processing to obtain the denoised ultrasound image. In the comparative experiments of synthetic, simulation, and real images, the performance of this method was quantitatively evaluated. Various results show that the ability of this algorithm in denoising and maintaining structural details is significantly better than that of other algorithms.
Suggested Citation
Hongbo Yan & Pengbo Zhao & Zhuang Du & Yang Xu & Pei Liu, 2021.
"Frequency division denoising algorithm based on VIF adaptive 2D-VMD ultrasound image,"
PLOS ONE, Public Library of Science, vol. 16(3), pages 1-22, March.
Handle:
RePEc:plo:pone00:0248146
DOI: 10.1371/journal.pone.0248146
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0248146. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.