Author
Listed:
- Achim Langenbucher
- Nóra Szentmáry
- Johannes Weisensee
- Jascha Wendelstein
- Alan Cayless
- Rupert Menapace
- Peter Hoffmann
Abstract
Purpose: To analyse corneal power based on a large optical coherence tomography dataset using raytracing, and to evaluate corneal power with respect to the corneal front apex plane for different definitions of best focus. Methods: A large OCT dataset (10,218 eyes of 8,430 patients) from the Casia 2 (Tomey, Japan) was post-processed in MATLAB (MathWorks, USA). Using radius of curvature, corneal front and back surface asphericity, central corneal thickness, and pupil size (aperture) a bundle of rays was traced through the cornea. Various best focus definitions were tested: a) minimum wavefront error, b) root mean squared ray scatter, c) mean absolute ray scatter, and d) total spot diameter. All 4 target optimisation criteria were tested with each best focus plane. With the best-fit keratometer index the difference of corneal power and keratometric power was evaluated using a multivariate linear model. Results: The mean corneal powers for a/b/c/d were 43.02±1.61/42.92±1.58/42.91±1.58/42.94±1.59 dpt respectively. The root mean squared deviations of corneal power from keratometric power (nK = 1.3317/1.3309/1.3308/1.3311 for a/b/c/d) were 0.308/0.185/0.171/0.209 dpt. With the multivariate linear model the respective RMS error was reduced to 0.110/0.052/0.043/0.065 dpt (R² = 0.872/0.921/0.935/0.904). Conclusions: Raytracing improves on linear Gaussian optics by considering the asphericity of both refracting surfaces and using Snell’s law of refraction in preference to paraxial simplifications. However, there is no unique definition of best focus, and therefore the calculated corneal power varies depending on the definition of best focus. The multivariate linear model enabled more precise estimation of corneal power compared to the simple keratometer equation.
Suggested Citation
Achim Langenbucher & Nóra Szentmáry & Johannes Weisensee & Jascha Wendelstein & Alan Cayless & Rupert Menapace & Peter Hoffmann, 2021.
"Prediction model for best focus, power, and spherical aberration of the cornea: Raytracing on a large dataset of OCT data,"
PLOS ONE, Public Library of Science, vol. 16(2), pages 1-11, February.
Handle:
RePEc:plo:pone00:0247048
DOI: 10.1371/journal.pone.0247048
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0247048. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.