Author
Listed:
- Stefanie C Altieri Dunn
- Johanna E Bellon
- Andrew Bilderback
- Jeffrey D Borrebach
- Jacob C Hodges
- Mary Kay Wisniewski
- Matthew E Harinstein
- Tamra E Minnier
- Joel B Nelson
- Daniel E Hall
Abstract
Background: Processes for transferring patients to higher acuity facilities lack a standardized approach to prognostication, increasing the risk for low value care that imposes significant burdens on patients and their families with unclear benefits. We sought to develop a rapid and feasible tool for predicting mortality using variables readily available at the time of hospital transfer. Methods and findings: All work was carried out at a single, large, multi-hospital integrated healthcare system. We used a retrospective cohort for model development consisting of patients aged 18 years or older transferred into the healthcare system from another hospital, hospice, skilled nursing or other healthcare facility with an admission priority of direct emergency admit. The cohort was randomly divided into training and test sets to develop first a 54-variable, and then a 14-variable gradient boosting model to predict the primary outcome of all cause in-hospital mortality. Secondary outcomes included 30-day and 90-day mortality and transition to comfort measures only or hospice care. For model validation, we used a prospective cohort consisting of all patients transferred to a single, tertiary care hospital from one of the 3 referring hospitals, excluding patients transferred for myocardial infarction or maternal labor and delivery. Prospective validation was performed by using a web-based tool to calculate the risk of mortality at the time of transfer. Observed outcomes were compared to predicted outcomes to assess model performance. Conclusions: The SafeNET algorithm is feasible and valid for real-time, bedside mortality risk prediction at the time of hospital transfer. Work is ongoing to build pathways triggered by this score that direct needed resources to the patients at greatest risk of poor outcomes.
Suggested Citation
Stefanie C Altieri Dunn & Johanna E Bellon & Andrew Bilderback & Jeffrey D Borrebach & Jacob C Hodges & Mary Kay Wisniewski & Matthew E Harinstein & Tamra E Minnier & Joel B Nelson & Daniel E Hall, 2021.
"SafeNET: Initial development and validation of a real-time tool for predicting mortality risk at the time of hospital transfer to a higher level of care,"
PLOS ONE, Public Library of Science, vol. 16(2), pages 1-16, February.
Handle:
RePEc:plo:pone00:0246669
DOI: 10.1371/journal.pone.0246669
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246669. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.