IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0246472.html
   My bibliography  Save this article

Performance of a deep-learning algorithm for referable thoracic abnormalities on chest radiographs: A multicenter study of a health screening cohort

Author

Listed:
  • Eun Young Kim
  • Young Jae Kim
  • Won-Jun Choi
  • Gi Pyo Lee
  • Ye Ra Choi
  • Kwang Nam Jin
  • Young Jun Cho

Abstract

Purpose: This study evaluated the performance of a commercially available deep-learning algorithm (DLA) (Insight CXR, Lunit, Seoul, South Korea) for referable thoracic abnormalities on chest X-ray (CXR) using a consecutively collected multicenter health screening cohort. Methods and materials: A consecutive health screening cohort of participants who underwent both CXR and chest computed tomography (CT) within 1 month was retrospectively collected from three institutions’ health care clinics (n = 5,887). Referable thoracic abnormalities were defined as any radiologic findings requiring further diagnostic evaluation or management, including DLA-target lesions of nodule/mass, consolidation, or pneumothorax. We evaluated the diagnostic performance of the DLA for referable thoracic abnormalities using the area under the receiver operating characteristic (ROC) curve (AUC), sensitivity, and specificity using ground truth based on chest CT (CT-GT). In addition, for CT-GT-positive cases, three independent radiologist readings were performed on CXR and clear visible (when more than two radiologists called) and visible (at least one radiologist called) abnormalities were defined as CXR-GTs (clear visible CXR-GT and visible CXR-GT, respectively) to evaluate the performance of the DLA. Results: Among 5,887 subjects (4,329 males; mean age 54±11 years), referable thoracic abnormalities were found in 618 (10.5%) based on CT-GT. DLA-target lesions were observed in 223 (4.0%), nodule/mass in 202 (3.4%), consolidation in 31 (0.5%), pneumothorax in one 1 (

Suggested Citation

  • Eun Young Kim & Young Jae Kim & Won-Jun Choi & Gi Pyo Lee & Ye Ra Choi & Kwang Nam Jin & Young Jun Cho, 2021. "Performance of a deep-learning algorithm for referable thoracic abnormalities on chest radiographs: A multicenter study of a health screening cohort," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-12, February.
  • Handle: RePEc:plo:pone00:0246472
    DOI: 10.1371/journal.pone.0246472
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246472
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0246472&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0246472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pranav Rajpurkar & Jeremy Irvin & Robyn L Ball & Kaylie Zhu & Brandon Yang & Hershel Mehta & Tony Duan & Daisy Ding & Aarti Bagul & Curtis P Langlotz & Bhavik N Patel & Kristen W Yeom & Katie Shpanska, 2018. "Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists," PLOS Medicine, Public Library of Science, vol. 15(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Engle & Andrei Gabrielian & Alyssa Long & Darrell E Hurt & Alex Rosenthal, 2020. "Performance of Qure.ai automatic classifiers against a large annotated database of patients with diverse forms of tuberculosis," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    2. Mingzhu Liu & Chirag Nagpal & Artur Dubrawski, 2024. "Deep Survival Models Can Improve Long-Term Mortality Risk Estimates from Chest Radiographs," Forecasting, MDPI, vol. 6(2), pages 1-14, May.
    3. Tianyu Han & Sven Nebelung & Federico Pedersoli & Markus Zimmermann & Maximilian Schulze-Hagen & Michael Ho & Christoph Haarburger & Fabian Kiessling & Christiane Kuhl & Volkmar Schulz & Daniel Truhn, 2021. "Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Oded Rotem & Tamar Schwartz & Ron Maor & Yishay Tauber & Maya Tsarfati Shapiro & Marcos Meseguer & Daniella Gilboa & Daniel S. Seidman & Assaf Zaritsky, 2024. "Visual interpretability of image-based classification models by generative latent space disentanglement applied to in vitro fertilization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Seung Seog Han & Ik Jun Moon & Seong Hwan Kim & Jung-Im Na & Myoung Shin Kim & Gyeong Hun Park & Ilwoo Park & Keewon Kim & Woohyung Lim & Ju Hee Lee & Sung Eun Chang, 2020. "Assessment of deep neural networks for the diagnosis of benign and malignant skin neoplasms in comparison with dermatologists: A retrospective validation study," PLOS Medicine, Public Library of Science, vol. 17(11), pages 1-21, November.
    6. Shashank Shetty & Ananthanarayana V S. & Ajit Mahale, 2022. "MS-CheXNet: An Explainable and Lightweight Multi-Scale Dilated Network with Depthwise Separable Convolution for Prediction of Pulmonary Abnormalities in Chest Radiographs," Mathematics, MDPI, vol. 10(19), pages 1-29, October.
    7. Weijie Fan & Yi Yang & Jing Qi & Qichuan Zhang & Cuiwei Liao & Li Wen & Shuang Wang & Guangxian Wang & Yu Xia & Qihua Wu & Xiaotao Fan & Xingcai Chen & Mi He & JingJing Xiao & Liu Yang & Yun Liu & Jia, 2024. "A deep-learning-based framework for identifying and localizing multiple abnormalities and assessing cardiomegaly in chest X-ray," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.