Author
Listed:
- Jilei Hu
- Yunzhi Tan
- Wenjun Zou
Abstract
Many factors impact earthquake-induced liquefaction, and there are complex interactions between them. Therefore, rationally identifying the key factors and clarifying their direct and indirect effects on liquefaction help to reduce the complexity of the predictive model and improve its predictive performance. This information can also help researchers understand the liquefaction phenomenon more clearly. In this paper, based on a shear wave velocity (Vs) database, 12 key factors are quantitatively identified using a correlation analysis and the maximum information coefficient (MIC) method. Subsequently, the regression method combined with the MIC method is used to construct a multiple causal path model without any assumptions based on the key factors for clarifying their direct and mediation effects on liquefaction. The results show that earthquake parameters produce more important influences on the occurrence of liquefaction than soil properties and site conditions, whereas deposit type, soil type, and deposit age produce relatively small impacts on liquefaction. In the multiple causal path model, the influence path of each factor on liquefaction becomes very clear. Among the key factors, in addition to the duration of the earthquake and Vs, other factors possess multiple mediation paths that affect liquefaction; the thickness of the critical layer and thickness of the unsaturated zone between the groundwater table and capping layer are two indirect-only mediators, and the fines content and thickness of the impermeable capping layer induce suppressive effects on liquefaction. In addition, the constructed causal model can provide a logistic regression model and a structure of the Bayesian network for predicting liquefaction. Five-fold cross-validation is used to compare and verify their predictive performances.
Suggested Citation
Jilei Hu & Yunzhi Tan & Wenjun Zou, 2021.
"Key factors influencing earthquake-induced liquefaction and their direct and mediation effects,"
PLOS ONE, Public Library of Science, vol. 16(2), pages 1-24, February.
Handle:
RePEc:plo:pone00:0246387
DOI: 10.1371/journal.pone.0246387
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246387. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.