IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0246331.html
   My bibliography  Save this article

Investor attention and cryptocurrency: Evidence from the Bitcoin market

Author

Listed:
  • Panpan Zhu
  • Xing Zhang
  • You Wu
  • Hao Zheng
  • Yinpeng Zhang

Abstract

This paper adds to the growing literature of cryptocurrency and behavioral finance. Specifically, we investigate the relationships between the novel investor attention and financial characteristics of Bitcoin, i.e., return and realized volatility, which are the two most important characteristics of one certain asset. Our empirical results show supports in the behavior finance area and argue that investor attention is the granger cause to changes in Bitcoin market both in return and realized volatility. Moreover, we make in-depth investigations by exploring the linear and non-linear connections of investor attention on Bitcoin. The results indeed demonstrate that investor attention shows sophisticated impacts on return and realized volatility of Bitcoin. Furthermore, we conduct one basic and several long horizons out-of-sample forecasts to explore the predictive ability of investor attention. The results show that compared with the traditional historical average benchmark model in forecasting technologies, investor attention improves prediction accuracy in Bitcoin return. Finally, we build economic portfolios based on investor attention and argue that investor attention can further generate significant economic values. To sum up, investor attention is a non-negligible pricing factor for Bitcoin asset.

Suggested Citation

  • Panpan Zhu & Xing Zhang & You Wu & Hao Zheng & Yinpeng Zhang, 2021. "Investor attention and cryptocurrency: Evidence from the Bitcoin market," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-28, February.
  • Handle: RePEc:plo:pone00:0246331
    DOI: 10.1371/journal.pone.0246331
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246331
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0246331&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0246331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Yu, Miao, 2019. "Forecasting Bitcoin volatility: The role of leverage effect and uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    3. Marquering, Wessel & Verbeek, Marno, 2004. "The Economic Value of Predicting Stock Index Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(2), pages 407-429, June.
    4. Yao, Ting & Zhang, Yue-Jun & Ma, Chao-Qun, 2017. "How does investor attention affect international crude oil prices?," Applied Energy, Elsevier, vol. 205(C), pages 336-344.
    5. Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018. "Informational efficiency of Bitcoin—An extension," Economics Letters, Elsevier, vol. 163(C), pages 106-109.
    6. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    7. John Y. Campbell & Samuel B. Thompson, 2005. "Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?," Harvard Institute of Economic Research Working Papers 2084, Harvard - Institute of Economic Research.
    8. Al-Yahyaee, Khamis Hamed & Rehman, Mobeen Ur & Mensi, Walid & Al-Jarrah, Idries Mohammad Wanas, 2019. "Can uncertainty indices predict Bitcoin prices? A revisited analysis using partial and multivariate wavelet approaches," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 47-56.
    9. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    10. Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
    11. Kapar, Burcu & Olmo, Jose, 2019. "An analysis of price discovery between Bitcoin futures and spot markets," Economics Letters, Elsevier, vol. 174(C), pages 62-64.
    12. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    13. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    14. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    15. Roger K. Loh, 2010. "Investor Inattention and the Underreaction to Stock Recommendations," Financial Management, Financial Management Association International, vol. 39(3), pages 1223-1252, September.
    16. Khuntia, Sashikanta & Pattanayak, J.K., 2018. "Adaptive market hypothesis and evolving predictability of bitcoin," Economics Letters, Elsevier, vol. 167(C), pages 26-28.
    17. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    18. Gustavo Grullon, 2004. "Advertising, Breadth of Ownership, and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 439-461.
    19. Shen, Dehua & Urquhart, Andrew & Wang, Pengfei, 2019. "Does twitter predict Bitcoin?," Economics Letters, Elsevier, vol. 174(C), pages 118-122.
    20. repec:pra:mprapa:58133 is not listed on IDEAS
    21. Wu, You & Han, Liyan & Yin, Libo, 2019. "Our currency, your attention: Contagion spillovers of investor attention on currency returns," Economic Modelling, Elsevier, vol. 80(C), pages 49-61.
    22. Adrian (Wai-Kong) Cheung & Eduardo Roca & Jen-Je Su, 2015. "Crypto-currency bubbles: an application of the Phillips-Shi-Yu (2013) methodology on Mt. Gox bitcoin prices," Applied Economics, Taylor & Francis Journals, vol. 47(23), pages 2348-2358, May.
    23. Bouoiyour, Jamal & Selmi, Refk, 2014. "What Does Crypto-currency Look Like? Gaining Insight into Bitcoin Phenomenon," MPRA Paper 57907, University Library of Munich, Germany.
    24. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    25. Yin, Libo & Feng, Jiabao, 2019. "Can investors attention on oil markets predict stock returns?," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 786-800.
    26. Pham, Linh & Luu Duc Huynh, Toan, 2020. "How does investor attention influence the green bond market?," Finance Research Letters, Elsevier, vol. 35(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben Jabeur, Sami & Gozgor, Giray & Rezgui, Hichem & Mohammed, Kamel Si, 2024. "Dynamic dependence between quantum computing stocks and Bitcoin: Portfolio strategies for a new era of asset classes," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    2. He, Xie & Hamori, Shigeyuki, 2024. "The higher the better? Hedging and investment strategies in cryptocurrency markets: Insights from higher moment spillovers," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    3. Zhao, Yingxiu & Goodell, John W. & Shen, Dehua, 2024. "Spillover effects according to classification of cryptocurrency," Finance Research Letters, Elsevier, vol. 65(C).
    4. Ardia, David & Bluteau, Keven, 2024. "Twitter and cryptocurrency pump-and-dumps," International Review of Financial Analysis, Elsevier, vol. 95(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    2. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    3. Goodell, John W. & Kumar, Satish & Li, Xiao & Pattnaik, Debidutta & Sharma, Anuj, 2022. "Foundations and research clusters in investor attention: Evidence from bibliometric and topic modelling analysis," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 511-529.
    4. Qingjie Zhou & Panpan Zhu & Yinpeng Zhang, 2023. "Contagion Spillover from Bitcoin to Carbon Futures Pricing: Perspective from Investor Attention," Energies, MDPI, vol. 16(2), pages 1-22, January.
    5. Tzeng, Kae-Yih & Su, Yi-Kai, 2024. "Can U.S. macroeconomic indicators forecast cryptocurrency volatility?," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    6. Qingjie Zhou & Panpan Zhu & You Wu & Yinpeng Zhang, 2022. "Research on the Volatility of the Cotton Market under Different Term Structures: Perspective from Investor Attention," Sustainability, MDPI, vol. 14(21), pages 1-20, November.
    7. Han, Liyan & Xu, Yang & Yin, Libo, 2018. "Forecasting the CNY-CNH pricing differential: The role of investor attention," Pacific-Basin Finance Journal, Elsevier, vol. 49(C), pages 232-247.
    8. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    9. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    10. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2015. "Stock return forecasting: Some new evidence," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 38-51.
    11. Wang, Chen & Shen, Dehua & Li, Youwei, 2022. "Aggregate Investor Attention and Bitcoin Return: The Long Short-term Memory Networks Perspective," Finance Research Letters, Elsevier, vol. 49(C).
    12. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    13. Andrew Detzel & Hong Liu & Jack Strauss & Guofu Zhou & Yingzi Zhu, 2021. "Learning and predictability via technical analysis: Evidence from bitcoin and stocks with hard‐to‐value fundamentals," Financial Management, Financial Management Association International, vol. 50(1), pages 107-137, March.
    14. Baetje, Fabian & Menkhoff, Lukas, 2016. "Equity premium prediction: Are economic and technical indicators unstable?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
    15. Feng, Jiabao & Wang, Yudong & Yin, Libo, 2017. "Oil volatility risk and stock market volatility predictability: Evidence from G7 countries," Energy Economics, Elsevier, vol. 68(C), pages 240-254.
    16. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    17. Pan, Zhiyuan & Pettenuzzo, Davide & Wang, Yudong, 2020. "Forecasting stock returns: A predictor-constrained approach," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 200-217.
    18. Nuno Silva, 2015. "Industry based equity premium forecasts," GEMF Working Papers 2015-19, GEMF, Faculty of Economics, University of Coimbra.
    19. Dehua Shen & Andrew Urquhart & Pengfei Wang, 2020. "Forecasting the volatility of Bitcoin: The importance of jumps and structural breaks," European Financial Management, European Financial Management Association, vol. 26(5), pages 1294-1323, November.
    20. Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.