IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0246044.html
   My bibliography  Save this article

Modeling vehicle ownership with machine learning techniques in the Greater Tamale Area, Ghana

Author

Listed:
  • Mohammed Abdul Muhsin Zambang
  • Haobin Jiang
  • Lukuman Wahab

Abstract

Vehicle ownership modeling and prediction is a crucial task in the transportation planning processes which, traditionally, uses statistical models in the modeling process. However, with the advancement in computing power of computers and Artificial Intelligence, Machine Learning (ML) algorithms are becoming an alternative or a complement to the statistical models in modeling the transportation planning processes. Although the application of ML algorithms to the transportation planning processes—like mode choice, and traffic forecasting and demand modeling—have received much attention in research and abound in literature, scanty attention is paid to its application to vehicle ownership modeling especially in the context of small to medium cities in developing countries. Therefore, this study attempts to fill this gap by modeling vehicle ownership in the Greater Tamale Area (GTA), a typically small to medium city in Ghana. Using a cross sectional survey of formal sectors workers, data was collected between June–August 2018. The study applied nine different ML classification algorithms to the dataset using 10-fold cross-validation technique/s and the Cohen-Kappa static/statistic to evaluate the predictive performance of each of the algorithms, and the Permutation Feature Importance to examine the features that contribute significantly to the prediction of vehicle ownership in GTA. The results showed that Linear Support Vector Classification (LinearSVC) classifier performed well in comparison with the other classifiers with regards to the overall predictive ability of the classifiers. In terms of class predictions, K- Nearest Neighbors (KNN) classifier performs well for no-vehicle class whiles Linear Support Vector Classification (LinearSVC) and GaussianNB classifiers performs well for motorcycle ownership. LinearSVC and Logistic Regression classifiers performed well on the car ownership class. Also, the results indicated that travel mode choice, average monthly income, average travel distance to workplace, average monthly expenditure on transport, duration of travel to workplace, occupational rank, age, household size and marital status were significant in predicting vehicle ownership for most of the classifiers. These findings could help policies makers carve out strategies that would reduce vehicle ownership but improve personal mobility.

Suggested Citation

  • Mohammed Abdul Muhsin Zambang & Haobin Jiang & Lukuman Wahab, 2021. "Modeling vehicle ownership with machine learning techniques in the Greater Tamale Area, Ghana," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-18, February.
  • Handle: RePEc:plo:pone00:0246044
    DOI: 10.1371/journal.pone.0246044
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246044
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0246044&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0246044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lukuman Wahab & Haobin Jiang, 2019. "A comparative study on machine learning based algorithms for prediction of motorcycle crash severity," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    2. Aziemah Azhar & Noratiqah Mohd Ariff & Mohd Aftar Abu Bakar & Azzuhana Roslan, 2022. "Classification of Driver Injury Severity for Accidents Involving Heavy Vehicles with Decision Tree and Random Forest," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    3. Gholamreza Shiran & Reza Imaninasab & Razieh Khayamim, 2021. "Crash Severity Analysis of Highways Based on Multinomial Logistic Regression Model, Decision Tree Techniques, and Artificial Neural Network: A Modeling Comparison," Sustainability, MDPI, vol. 13(10), pages 1-23, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.