Author
Listed:
- Hsueh-Yi Lu
- Abel Po-Hao Huang
- Lu-Ting Kuo
Abstract
Measurement of heart rate variability can reveal autonomic nervous system function. Changes in heart rate variability can be associated with disease severity, risk of complications, and prognosis. We aimed to investigate the prognostic value of heart rate variability measurements in patients with moderate-to-severe traumatic brain injury after decompression surgery. We conducted a prospective study of 80 patients with traumatic brain injury after decompression surgery using a noninvasive electrocardiography device for data collection. Assessment of heart rate variability parameters included the time and frequency domains. The correlations between heart rate variability parameters and one-year mortality and functional outcomes were analyzed. Time domain measures of heart rate variability, using the standard deviation of the RR intervals and the square root of the mean squared differences of successive RR intervals, were statistically significantly lower in the group of patients with unfavorable outcomes and those that died. In frequency domain analysis, very low-frequency and total power were significantly higher in patients with favorable functional outcomes. High-frequency, low-frequency, and total power were statistically significantly higher in patients who survived for more than one year. Multivariate analysis using a model combining age and the Glasgow Coma Scale score with variables derived from heart rate variability substantially improved the prognostic value for predicting long-term outcome. These findings reinforced the concept that traumatic brain injury impacts the brain-heart axis and cardiac autonomic modulation even after decompression surgery, and variables derived from heart rate variability may be useful predictors of outcome.
Suggested Citation
Hsueh-Yi Lu & Abel Po-Hao Huang & Lu-Ting Kuo, 2021.
"Prognostic value of variables derived from heart rate variability in patients with traumatic brain injury after decompressive surgery,"
PLOS ONE, Public Library of Science, vol. 16(2), pages 1-10, February.
Handle:
RePEc:plo:pone00:0245792
DOI: 10.1371/journal.pone.0245792
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0245792. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.