IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0245561.html
   My bibliography  Save this article

Improving precise point positioning performance based on Prophet model

Author

Listed:
  • Shujian Liao
  • Chenbo Yang
  • Dengao Li

Abstract

Precision point positioning (PPP) is widely used in maritime navigation and other scenarios because it does not require a reference station. In PPP, the satellite clock bias (SCB) cannot be eliminated by differential, thus leading to an increase in positioning error. The prediction accuracy of SCB has become one of the key factors restricting positioning accuracy. Although International GNSS Service (IGS) provides the ultra-rapid ephemeris prediction part (IGU-P), its quality and real-time performance can not meet the practical application. In order to improve the accuracy of PPP, this paper proposes to use the Prophet model to predict SCB. Specifically, SCB sequence is read from the observation part in the ultra-rapid ephemeris (IGU-O) released by IGS. Next, the SCB sequence between adjacent epochs are subtracted to obtain the corresponding SCB single difference sequence. Then using the Prophet model to predict SCB single difference sequence. Finally, the prediction result is substituted into the PPP positioning observation equation to obtain the positioning result. This paper uses the final ephemeris (IGF) published by IGS as a benchmark and compares the experimental results with IGU-P. For the selected four satellites, compared with the results of the IGU-P, the accuracy of SCB prediction of the model in this paper is improved by about 50.3%, 61.7%, 60.4%, and 48.8%. In terms of PPP positioning results, we use Real-time kinematic (RTK) measurements as a benchmark in this paper. Positioning accuracy has increased by 26%, 35%, and 19% in the N, E, and U directions, respectively. The results show that the Prophet model can improve the performance of PPP.

Suggested Citation

  • Shujian Liao & Chenbo Yang & Dengao Li, 2021. "Improving precise point positioning performance based on Prophet model," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-12, January.
  • Handle: RePEc:plo:pone00:0245561
    DOI: 10.1371/journal.pone.0245561
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245561
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0245561&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0245561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0245561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.