Author
Listed:
- Patrizio Barca
- Fabio Paolicchi
- Giacomo Aringhieri
- Federica Palmas
- Daniela Marfisi
- Maria Evelina Fantacci
- Davide Caramella
- Marco Giannelli
Abstract
Nowadays, given the technological advance in CT imaging and increasing heterogeneity in characteristics of CT scanners, a number of CT scanners with different manufacturers/technologies are often installed in a hospital centre and used by various departments. In this phantom study, a comprehensive assessment of image quality of 5 scanners (from 3 manufacturers and with different models) for head CT imaging, as clinically used at a single hospital centre, was hence carried out. Helical and/or sequential acquisitions of the Catphan-504 phantom were performed, using the scanning protocols (CTDIvol range: 54.7–57.5 mGy) employed by the staff of various Radiology/Neuroradiology departments of our institution for routine head examinations. CT image quality for each scanner/acquisition protocol was assessed through noise level, noise power spectrum (NPS), contrast-to-noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD) and non-uniformity index analyses. Noise values ranged from 3.5 HU to 5.7 HU across scanners/acquisition protocols. NPS curves differed in terms of peak position (range: 0.21–0.30 mm-1). A substantial variation of CNR values with scanner/acquisition protocol was observed for different contrast inserts. The coefficient of variation (standard deviation divided by mean value) of CNR values across scanners/acquisition protocols was 18.3%, 31.4%, 34.2%, 30.4% and 30% for teflon, delrin, LDPE, polystyrene and acrylic insert, respectively. An appreciable difference in MTF curves across scanners/acquisition protocols was revealed, with a coefficient of variation of f50%/f10% of MTF curves across scanners/acquisition protocols of 10.1%/7.4%. A relevant difference in LCD performance of different scanners/acquisition protocols was found. The range of contrast threshold for a typical object size of 3 mm was 3.7–5.8 HU. Moreover, appreciable differences in terms of NUI values (range: 4.1%-8.3%) were found. The analysis of several quality indices showed a non-negligible variability in head CT imaging capabilities across different scanners/acquisition protocols. This highlights the importance of a physical in-depth characterization of image quality for each CT scanner as clinically used, in order to optimize CT imaging procedures.
Suggested Citation
Patrizio Barca & Fabio Paolicchi & Giacomo Aringhieri & Federica Palmas & Daniela Marfisi & Maria Evelina Fantacci & Davide Caramella & Marco Giannelli, 2021.
"A comprehensive assessment of physical image quality of five different scanners for head CT imaging as clinically used at a single hospital centre—A phantom study,"
PLOS ONE, Public Library of Science, vol. 16(1), pages 1-17, January.
Handle:
RePEc:plo:pone00:0245374
DOI: 10.1371/journal.pone.0245374
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0245374. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.