Author
Listed:
- Jean-Michel Bouchard
- Erin K Cressman
Abstract
Reaching with a visuomotor distortion in a virtual environment leads to reach adaptation in the trained hand, and in the untrained hand. In the current study we asked if reach adaptation in the untrained (right) hand is due to transfer of explicit adaptation (EA; strategic changes in reaches) and/or implicit adaptation (IA; unconscious changes in reaches) from the trained (left) hand, and if this transfer changes depending on instructions provided. We further asked if EA and IA are retained in both the trained and untrained hands. Participants (n = 60) were divided into 3 groups (Instructed (provided with instructions on how to counteract the visuomotor distortion), Non-Instructed (no instructions provided), and Control (EA not assessed)). EA and IA were assessed in both the trained and untrained hands immediately following rotated reach training with a 40° visuomotor distortion, and again 24 hours later by having participants reach in the absence of cursor feedback. Participants were to reach (1) so that the cursor landed on the target (EA + IA), and (2) so that their hand landed on the target (IA). Results revealed that, while initial EA observed in the trained hand was greater for the Instructed versus Non-Instructed group, the full extent of EA transferred between hands for both groups and was retained across days. IA observed in the trained hand was greatest in the Non-Instructed group. However, IA did not significantly transfer between hands for any of the three groups. Limited retention of IA was observed in the trained hand. Together, these results suggest that while initial EA and IA in the trained hand are dependent on instructions provided, transfer and retention of visuomotor adaptation to a large visuomotor distortion are driven almost exclusively by EA.
Suggested Citation
Jean-Michel Bouchard & Erin K Cressman, 2021.
"Intermanual transfer and retention of visuomotor adaptation to a large visuomotor distortion are driven by explicit processes,"
PLOS ONE, Public Library of Science, vol. 16(1), pages 1-20, January.
Handle:
RePEc:plo:pone00:0245184
DOI: 10.1371/journal.pone.0245184
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0245184. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.