Author
Listed:
- Gui-yao Wang
- Yong-gang Huang
- Run-fa Li
- Jing-mei Chang
- Jin-liang Fu
Abstract
Grassroots have received more attention than the traditional method as soil reinforcement materials, especially the use of vetiver and other vegetation protection methods to treat expansive soil slope, have been tried and applied. To study the influence of grassroots on the strength properties of expansive soil, the laws of vetiver root growth over time and its vertical distribution of root content(δ) were firstly investigated by the experiment of planting vetiver. Then different δ and depth of planted soil were obtained. Simultaneously different δ and water content(ω) of grafted soil were made. With the direct shear test, the shear strength parameters of root-soil with different δ were analyzed. The shear test on root-soil composites with different δ was carried out to compare the strength characteristics of planted and grafted soil. The results showed that the δ of vetiver decreased with the increase of depth, and the δ of each layer increased with the growth period. The δ of 180d was 70.5% higher than that of 90d. The cohesion(c) of root-soil can be increased by more than 97%, and internal friction angle(φ) can be increased by more than 15.4% after 180 days. The c of 90 d vetiver root system can be increased by more than 18%, and the φ can be increased by more than 1.5%. At each depth, the c and φ of composite soil increases with the increase of δ, and the increment of cohesion (Δc) and the increment of internal friction angle (Δφ) increase with the increment of δ. But the increase in the ω will weaken the shear strength parameters of root-soil. Under the condition of the planted root system and grafted root system, the influence degree of δ on strength parameter of root-soil is different, and the law of strength parameters versus δ of grafted soil of 365d is similar to that of planted soil of 90d. And the root reinforcement of grafted soil is weaker than planted soil. Hence the grafted soil can´t accurately reflect the root-soil interaction of the existing root system.
Suggested Citation
Gui-yao Wang & Yong-gang Huang & Run-fa Li & Jing-mei Chang & Jin-liang Fu, 2020.
"Influence of vetiver root on strength of expansive soil-experimental study,"
PLOS ONE, Public Library of Science, vol. 15(12), pages 1-20, December.
Handle:
RePEc:plo:pone00:0244818
DOI: 10.1371/journal.pone.0244818
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0244818. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.