Author
Listed:
- Lei Guo
- Enyu Kan
- Youxi Wu
- Huan Lv
- Guizhi Xu
Abstract
With the continuous improvement of automation and informatization, the electromagnetic environment has become increasingly complex. Traditional protection methods for electronic systems are facing with serious challenges. Biological nervous system has the self-adaptive advantages under the regulation of the nervous system. It is necessary to explore a new thought on electromagnetic protection by drawing from the self-adaptive advantage of the biological nervous system. In this study, the scale-free spiking neural network (SFSNN) is constructed, in which the Izhikevich neuron model is employed as a node, and the synaptic plasticity model including excitatory and inhibitory synapses is employed as an edge. Under white Gaussian noise, the noise suppression abilities of the SFSNNs with the high average clustering coefficient (ACC) and the SFSNNs with the low ACC are studied comparatively. The noise suppression mechanism of the SFSNN is explored. The experiment results demonstrate that the following. (1) The SFSNN has a certain degree of noise suppression ability, and the SFSNNs with the high ACC have higher noise suppression performance than the SFSNNs with the low ACC. (2) The neural information processing of the SFSNN is the linkage effect of dynamic changes in neuron firing, synaptic weight and topological characteristics. (3) The synaptic plasticity is the intrinsic factor of the noise suppression ability of the SFSNN.
Suggested Citation
Lei Guo & Enyu Kan & Youxi Wu & Huan Lv & Guizhi Xu, 2020.
"Noise suppression ability and its mechanism analysis of scale-free spiking neural network under white Gaussian noise,"
PLOS ONE, Public Library of Science, vol. 15(12), pages 1-24, December.
Handle:
RePEc:plo:pone00:0244683
DOI: 10.1371/journal.pone.0244683
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0244683. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.