Author
Listed:
- Stephen C Van Hedger
- John Veillette
- Shannon L M Heald
- Howard C Nusbaum
Abstract
Many human behaviors are discussed in terms of discrete categories. Quantizing behavior in this fashion may provide important traction for understanding the complexities of human experience, but it also may bias understanding of phenomena and associated mechanisms. One example of this is absolute pitch (AP), which is often treated as a discrete trait that is either present or absent (i.e., with easily identifiable near-perfect “genuine” AP possessors and at-chance non-AP possessors) despite emerging evidence that pitch-labeling ability is not all-or-nothing. We used a large-scale online assessment to test the discrete model of AP, specifically by measuring how intermediate performers related to the typically defined “non-AP” and “genuine AP” populations. Consistent with prior research, individuals who performed at-chance (non-AP) reported beginning musical instruction much later than the near-perfect AP participants, and the highest performers were more likely to speak a tonal language than were the lowest performers (though this effect was not as statistically robust as one would expect from prior research). Critically, however, these developmental factors did not differentiate the near-perfect AP performers from the intermediate AP performers. Gaussian mixture modeling supported the existence of two performance distributions–the first distribution encompassed both the intermediate and near-perfect AP possessors, whereas the second distribution encompassed only the at-chance participants. Overall, these results provide support for conceptualizing intermediate levels of pitch-labeling ability along the same continuum as genuine AP-level pitch labeling ability—in other words, a continuous distribution of AP skill among all above-chance performers rather than discrete categories of ability. Expanding the inclusion criteria for AP makes it possible to test hypotheses about the mechanisms that underlie this ability and relate this ability to more general cognitive mechanisms involved in other abilities.
Suggested Citation
Stephen C Van Hedger & John Veillette & Shannon L M Heald & Howard C Nusbaum, 2020.
"Revisiting discrete versus continuous models of human behavior: The case of absolute pitch,"
PLOS ONE, Public Library of Science, vol. 15(12), pages 1-21, December.
Handle:
RePEc:plo:pone00:0244308
DOI: 10.1371/journal.pone.0244308
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0244308. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.