Author
Listed:
- David Mödinger
- Jan-Hendrik Lorenz
- Rens W van der Heijden
- Franz J Hauck
Abstract
The cryptocurrency system Bitcoin uses a peer-to-peer network to distribute new transactions to all participants. For risk estimation and usability aspects of Bitcoin applications, it is necessary to know the time required to disseminate a transaction within the network. Unfortunately, this time is not immediately obvious and hard to acquire. Measuring the dissemination latency requires many connections into the Bitcoin network, wasting network resources. Some third parties operate that way and publish large scale measurements. Relying on these measurements introduces a dependency and requires additional trust. This work describes how to unobtrusively acquire reliable estimates of the dissemination latencies for transactions without involving a third party. The dissemination latency is modelled with a lognormal distribution, and we estimate their parameters using a Bayesian model that can be updated dynamically. Our approach provides reliable estimates even when using only eight connections, the minimum connection number used by the default Bitcoin client. We provide an implementation of our approach as well as datasets for modelling and evaluation. Our approach, while slightly underestimating the latency distribution, is largely congruent with observed dissemination latencies.
Suggested Citation
David Mödinger & Jan-Hendrik Lorenz & Rens W van der Heijden & Franz J Hauck, 2020.
"Unobtrusive monitoring: Statistical dissemination latency estimation in Bitcoin’s peer-to-peer network,"
PLOS ONE, Public Library of Science, vol. 15(12), pages 1-21, December.
Handle:
RePEc:plo:pone00:0243475
DOI: 10.1371/journal.pone.0243475
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0243475. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.