Author
Listed:
- Helia Mahzoun Alzakerin
- Yannis Halkiadakis
- Kristin D Morgan
Abstract
Gait asymmetry is often observed in populations with varying degrees of neuromuscular control. While changes in vertical ground reaction force (vGRF) peak magnitude are associated with altered limb loading that can be observed during asymmetric gait, the challenge is identifying techniques with the sensitivity to detect these altered movement patterns. Autoregressive (AR) modeling has successfully delineated between healthy and pathological gait during running; but has been little explored in walking. Thus, AR modeling was implemented to assess differences in vGRF pattern dynamics during symmetric and asymmetric walking. We hypothesized that the AR model coefficients would better detect differences amongst the symmetric and asymmetric walking conditions than the vGRF peak magnitude mean. Seventeen healthy individuals performed a protocol that involved walking on a split-belt instrumented treadmill at different symmetric (0.75m/s, 1.0 m/s, 1.5 m/s) and asymmetric (Side 1: 0.75m/s-Side 2:1.0 m/s; Side 1:1.0m/s-Side 2:1.5 m/s) gait conditions. Vertical ground reaction force peaks extracted during the weight-acceptance and propulsive phase of each step were used to construct a vGRF peak time series. Then, a second order AR model was fit to the vGRF peak waveform data to determine the AR model coefficients. The resulting AR coefficients were plotted on a stationarity triangle and their distance from the triangle centroid was computed. Significant differences in vGRF patterns were detected amongst the symmetric and asymmetric conditions using the AR modeling coefficients (p = 0.01); however, no differences were found when comparing vGRF peak magnitude means. These findings suggest that AR modeling has the sensitivity to identify differences in gait asymmetry that could aid in monitoring rehabilitation progression.
Suggested Citation
Helia Mahzoun Alzakerin & Yannis Halkiadakis & Kristin D Morgan, 2020.
"Characterizing gait pattern dynamics during symmetric and asymmetric walking using autoregressive modeling,"
PLOS ONE, Public Library of Science, vol. 15(12), pages 1-11, December.
Handle:
RePEc:plo:pone00:0243221
DOI: 10.1371/journal.pone.0243221
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0243221. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.