IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0242197.html
   My bibliography  Save this article

A study of longitudinal mobile health data through fuzzy clustering methods for functional data: The case of allergic rhinoconjunctivitis in childhood

Author

Listed:
  • Paolo Giordani
  • Serena Perna
  • Annamaria Bianchi
  • Antonio Pizzulli
  • Salvatore Tripodi
  • Paolo Maria Matricardi

Abstract

The use of mobile communication devices in health care is spreading worldwide. A huge amount of health data collected by these devices (mobile health data) is nowadays available. Mobile health data may allow for real-time monitoring of patients and delivering ad-hoc treatment recommendations. This paper aims at showing how this may be done by exploiting the potentialities of fuzzy clustering techniques. In fact, such techniques can be fruitfully applied to mobile health data in order to identify clusters of patients for diagnostic classification and cluster-specific therapies. However, since mobile health data are full of noise, fuzzy clustering methods cannot be directly applied to mobile health data. Such data must be denoised prior to analyzing them. When longitudinal mobile health data are available, functional data analysis represents a powerful tool for filtering out the noise in the data. Fuzzy clustering methods for functional data can then be used to determine groups of patients. In this work we develop a fuzzy clustering method, based on the concept of medoid, for functional data and we apply it to longitudinal mHealth data on daily symptoms and consumptions of anti-symptomatic drugs collected by two sets of patients in Berlin (Germany) and Ascoli Piceno (Italy) suffering from allergic rhinoconjunctivitis. The studies showed that clusters of patients with similar changes in symptoms were identified opening the possibility of precision medicine.

Suggested Citation

  • Paolo Giordani & Serena Perna & Annamaria Bianchi & Antonio Pizzulli & Salvatore Tripodi & Paolo Maria Matricardi, 2020. "A study of longitudinal mobile health data through fuzzy clustering methods for functional data: The case of allergic rhinoconjunctivitis in childhood," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
  • Handle: RePEc:plo:pone00:0242197
    DOI: 10.1371/journal.pone.0242197
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242197
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0242197&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0242197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    2. C. Abraham & P. A. Cornillon & E. Matzner‐Løber & N. Molinari, 2003. "Unsupervised Curve Clustering using B‐Splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(3), pages 581-595, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferraro, Maria Brigida, 2024. "Fuzzy k-Means: history and applications," Econometrics and Statistics, Elsevier, vol. 30(C), pages 110-123.
    2. Yulia Shichkina & Mikhail Petrov & Fatkieva Roza, 2022. "Determination of Significant Parameters on the Basis of Methods of Mathematical Statistics, and Boolean and Fuzzy Logic," Mathematics, MDPI, vol. 10(7), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Vogt & Oliver Linton, 2015. "Classification of nonparametric regression functions in heterogeneous panels," CeMMAP working papers CWP06/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Michael Vogt & Oliver Linton, 2017. "Classification of non-parametric regression functions in longitudinal data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 5-27, January.
    3. O. I. Traore & P. Cristini & N. Favretto-Cristini & L. Pantera & P. Vieu & S. Viguier-Pla, 2019. "Clustering acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches," Computational Statistics, Springer, vol. 34(2), pages 631-652, June.
    4. Michael Vogt & Oliver Linton, 2015. "Classification of nonparametric regression functions in heterogeneous panels," CeMMAP working papers 06/15, Institute for Fiscal Studies.
    5. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    7. Ja‐Yoon Jang & Hee‐Seok Oh & Yaeji Lim & Ying Kuen Cheung, 2021. "Ensemble clustering for step data via binning," Biometrics, The International Biometric Society, vol. 77(1), pages 293-304, March.
    8. Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
    9. C. Denis & E. Lebarbier & C. Lévy‐Leduc & O. Martin & L. Sansonnet, 2020. "A novel regularized approach for functional data clustering: an application to milking kinetics in dairy goats," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 623-640, June.
    10. Vogt, Michael & Linton, Oliver, 2020. "Multiscale clustering of nonparametric regression curves," Journal of Econometrics, Elsevier, vol. 216(1), pages 305-325.
    11. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
    12. Carlos Barrera-Causil & Juan Carlos Correa & Andrew Zamecnik & Francisco Torres-Avilés & Fernando Marmolejo-Ramos, 2021. "An FDA-Based Approach for Clustering Elicited Expert Knowledge," Stats, MDPI, vol. 4(1), pages 1-21, March.
    13. Amovin-Assagba, Martial & Gannaz, Irène & Jacques, Julien, 2022. "Outlier detection in multivariate functional data through a contaminated mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    14. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    15. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    16. C. Abraham & G. Biau & B. Cadre, 2006. "On the Kernel Rule for Function Classification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(3), pages 619-633, September.
    17. repec:cte:wsrepe:ws140101 is not listed on IDEAS
    18. Casado, David, 2009. "Classification of functional data: a weighted distance approach," DES - Working Papers. Statistics and Econometrics. WS ws093915, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Chuyuan Lin & Ying Yu & Lucas Y. Wu & Jiguo Cao, 2023. "Unsupervised learning on U.S. weather forecast performance," Computational Statistics, Springer, vol. 38(3), pages 1193-1213, September.
    20. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    21. Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "K-expectiles clustering," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0242197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.