Author
Listed:
- Thanasan Intarakumthornchai
- Ramil Kesvarakul
Abstract
Chicken egg products increased by 60% worldwide resulting in the farmers or traders egg industry. The double yolk (DY) eggs are priced higher than single yolk (SY) eggs around 35% at the same size. Although, separating DY from SY will increase more revenue but it has to be replaced at the higher cost from skilled labor for sorting. Normally, the separation of double yolk eggs required the expertise person by weigh and shape of egg but it is still high error. The purpose of this research is to detect double-yolked (DY) chicken eggs with weight and ratio of the egg’s size using fuzzy logic and developing a low cost prototype to reduce the cost of separation. The K-means clustering is used for separating DY and SY, firstly. However, the error from this technique is still high as 15.05% because of its hard clustering. Therefore, the intersection zone scattering from using the weight and ratio of the egg’s size to input of DY and SY is taken into consider with fuzzy logic algorithm, to improve the error. The results of errors from fuzzy logic are depended with input membership functions (MF). This research selects triangular MF of weight as low = 65 g, medium = 75 g and high = 85 g, while ratio of the egg is triangular MF as low = 1.30, medium = 1.40 and high = 1.50. This algorithm is not provide the minimum total error but it gives the low error to detect a double yolk while the real egg is SY as 1.43% of total eggs. This algorithm is applied to develop a double yolk egg detection prototype with Mbed platform by a load cell and OpenMV CAM, to measure the weight and ratio of the egg respectively.
Suggested Citation
Thanasan Intarakumthornchai & Ramil Kesvarakul, 2020.
"Double yolk eggs detection using fuzzy logic,"
PLOS ONE, Public Library of Science, vol. 15(11), pages 1-16, November.
Handle:
RePEc:plo:pone00:0241888
DOI: 10.1371/journal.pone.0241888
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0241888. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.