Author
Listed:
- Joseph Redfern
- Kirill Sidorov
- Paul L Rosin
- Padraig Corcoran
- Simon C Moore
- David Marshall
Abstract
The association between alcohol outlets and violence has long been recognised, and is commonly used to inform policing and licensing policies (such as staggered closing times and zoning). Less investigated, however, is the association between violent crime and other urban points of interest, which while associated with the city centre alcohol consumption economy, are not explicitly alcohol outlets. Here, machine learning (specifically, LASSO regression) is used to model the distribution of violent crime for the central 9 km2 of ten large UK cities. Densities of 620 different Point of Interest types (sourced from Ordnance Survey) are used as predictors, with the 10 most explanatory variables being automatically selected for each city. Cross validation is used to test generalisability of each model. Results show that the inclusion of additional point of interest types produces a more accurate model, with significant increases in performance over a baseline univariate alcohol-outlet only model. Analysis of chosen variables for city-specific models shows potential candidates for new strategies on a per-city basis, with combined-model variables showing the general trend in POI/violence association across the UK. Although alcohol outlets remain the best individual predictor of violence, other points of interest should also be considered when modelling the distribution of violence in city centres. The presented method could be used to develop targeted, city-specific initiatives that go beyond alcohol outlets and also consider other locations.
Suggested Citation
Joseph Redfern & Kirill Sidorov & Paul L Rosin & Padraig Corcoran & Simon C Moore & David Marshall, 2020.
"Association of violence with urban points of interest,"
PLOS ONE, Public Library of Science, vol. 15(9), pages 1-17, September.
Handle:
RePEc:plo:pone00:0239840
DOI: 10.1371/journal.pone.0239840
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0239840. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.