IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0238956.html
   My bibliography  Save this article

Automatic image annotation method based on a convolutional neural network with threshold optimization

Author

Listed:
  • Jianfang Cao
  • Aidi Zhao
  • Zibang Zhang

Abstract

In this study, a convolutional neural network with threshold optimization (CNN-THOP) is proposed to solve the issue of overlabeling or downlabeling arising during the multilabel image annotation process in the use of a ranking function for label annotation along with prediction probability. This model fuses the threshold optimization algorithm to the CNN structure. First, an optimal model trained by the CNN is used to predict the test set images, and batch normalization (BN) is added to the CNN structure to effectively accelerate the convergence speed and obtain a group of prediction probabilities. Second, threshold optimization is performed on the obtained prediction probability to derive an optimal threshold for each class of labels to form a group of optimal thresholds. When the prediction probability for this class of labels is greater than or equal to the corresponding optimal threshold, this class of labels is used as the annotation result for the image. During the annotation process, the multilabel annotation for the image to be annotated is realized by loading the optimal model and the optimal threshold. Verification experiments are performed on the MIML, COREL5K, and MSRC datasets. Compared with the MBRM, the CNN-THOP increases the average precision on MIML, COREL5K, and MSRC by 27%, 28% and 33%, respectively. Compared with the E2E-DCNN, the CNN-THOP increases the average recall rate by 3% on both COREL5K and MSRC. The most precise annotation effect for CNN-THOP is observed on the MIML dataset, with a complete matching degree reaching 64.8%.

Suggested Citation

  • Jianfang Cao & Aidi Zhao & Zibang Zhang, 2020. "Automatic image annotation method based on a convolutional neural network with threshold optimization," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
  • Handle: RePEc:plo:pone00:0238956
    DOI: 10.1371/journal.pone.0238956
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238956
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0238956&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0238956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdoulghafor & Samir Brahim Belhaouari & Normahira Mamat & Shamsul Faisal Mohd Hussein, 2022. "Advanced Technology in Agriculture Industry by Implementing Image Annotation Technique and Deep Learning Approach: A Review," Agriculture, MDPI, vol. 12(7), pages 1-35, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0238956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.