Author
Listed:
- Wenjing Zhang
- Shuai Xu
- Laner Shi
- Zhangzhi Zhu
- Xinying Xie
Abstract
Background: Patients diagnosed with Oral Floor Squamous Cell Carcinoma (OFSCC) face considerable challenges in physiology and psychology. This study explored prognostic signatures to predict prognosis in OFSCC through a detailed transcriptomic analysis. Method: We built an interactive competing endogenous RNA (ceRNA) network that included lncRNAs, miRNAs and mRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to predict the gene functions and regulatory pathways of mRNAs. Least absolute shrinkage and selection operator algorithm (LASSO) analysis and Cox regression analysis were used to screen prognosis factors. The Kaplan-Meier method was used to analyze the survival rate of prognosis factors. Risk score was used to assess the reliability of the prediction model. Results: A specific ceRNA network consisting of 56 mRNAs, 16 miRNAs and 31 lncRNAs was established. Three key genes (HOXC13, TGFBR3, KLHL40) and 4 clinical factors (age, gender, TNM, and clinical stage) were identified and effectively predicted the for survival time. The expression of a gene signature was validated in two external validation cohorts. The signature (areas under the curve of 3 and 5 years were 0.977 and 0.982, respectively) showed high prognostic accuracy in the complete TCGA cohort. Conclusions: Our study successfully developed an extensive ceRNA network for OFSCC and further identified a 3-mRNA and 4-clinical-factor signature, which may serve as a biomarker.
Suggested Citation
Wenjing Zhang & Shuai Xu & Laner Shi & Zhangzhi Zhu & Xinying Xie, 2020.
"Construction and analysis of a competing endogenous RNA network to reveal potential prognostic biomarkers for Oral Floor Squamous Cell Carcinoma,"
PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.
Handle:
RePEc:plo:pone00:0238420
DOI: 10.1371/journal.pone.0238420
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0238420. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.