IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0237304.html
   My bibliography  Save this article

A fractal kinetics SI model can explain the dynamics of COVID-19 epidemics

Author

Listed:
  • Kosmas Kosmidis
  • Panos Macheras

Abstract

The COVID-19 pandemic has already had a shocking impact on the lives of everybody on the planet. Here, we present a modification of the classical SI model, the Fractal Kinetics SI model which is in excellent agreement with the disease outbreak data available from the World Health Organization. The fractal kinetic approach that we propose here originates from chemical kinetics and has successfully been used in the past to describe reaction dynamics when imperfect mixing and segregation of the reactants is important and affects the dynamics of the reaction. The model introduces a novel epidemiological parameter, the “fractal” exponent h which is introduced in order to account for the self-organization of the societies against the pandemic through social distancing, lockdowns and flight restrictions.

Suggested Citation

  • Kosmas Kosmidis & Panos Macheras, 2020. "A fractal kinetics SI model can explain the dynamics of COVID-19 epidemics," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-9, August.
  • Handle: RePEc:plo:pone00:0237304
    DOI: 10.1371/journal.pone.0237304
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237304
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0237304&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0237304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chénangnon Frédéric Tovissodé & Bruno Enagnon Lokonon & Romain Glèlè Kakaï, 2020. "On the use of growth models to understand epidemic outbreaks with application to COVID-19 data," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    2. Ilyass Dahmouni & Elnaz Kanani Kuchesfehani, 2022. "Necessity of Social Distancing in Pandemic Control: A Dynamic Game Theory Approach," Dynamic Games and Applications, Springer, vol. 12(1), pages 237-257, March.
    3. Yiannis Contoyiannis & Stavros G. Stavrinides & Michael P. Hanias & Myron Kampitakis & Pericles Papadopoulos & Rodrigo Picos & Stelios M. Potirakis, 2020. "A Universal Physics-Based Model Describing COVID-19 Dynamics in Europe," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
    4. Shanshan Wan & Zhuo Chen & Cheng Lyu & Ruofan Li & Yuntao Yue & Ying Liu, 2022. "Research on disaster information dissemination based on social sensor networks," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501329221, March.
    5. Javier Cifuentes-Faura & Ursula Faura-Martínez & Matilde Lafuente-Lechuga, 2022. "Mathematical Modeling and the Use of Network Models as Epidemiological Tools," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    6. Tong Wang & Yang Liu & Qiyuan Li & Peng Du & Xiaogong Zheng & Qingfei Gao, 2023. "State-of-the-Art Review of the Resilience of Urban Bridge Networks," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    7. Rana Yousif & Aref Jeribi & Saad Al-Azzawi, 2023. "Fractional-Order SEIRD Model for Global COVID-19 Outbreak," Mathematics, MDPI, vol. 11(4), pages 1-19, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0237304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.