Author
Listed:
- Tomasz Zapolski
- Anna Kamińska
- Tomasz Kocki
- Andrzej Wysokiński
- Ewa M Urbanska
Abstract
Objective: Although a number of modifiable and non-modifiable causes were implicated in arterial stiffness, its pathogenesis remains elusive, and very little is known about aortic elasticity in supraventricular arrhythmias. The potential role of disturbed kynurenine metabolism in the pathogenesis of cardiovascular disease has been recently suggested. Thus, we studied the correlations of aortic stiffness and echocardiographic parameters with biochemical markers and serum level of kynurenic acid (KYNA), an endothelial derivative of tryptophan, formed along the kynurenine pathway, among patients with atrial fibrillation (AF). Methods: Study cohort comprised 100 patients with persistent AF (43 females/57 males). Arterial stiffness index (ASI), structural and functional indices of left atrium (LA) and left ventricle (LV) were evaluated electrocardiographically. Biochemical analyses included the measurements of serum KYNA (HPLC) and of the selected markers of lipids and glucose metabolism, thyroid status, kidney function, inflammation and coagulation. Results: KYNA (β = 0.389, P = 0.029), homocysteine (β = 0.256, P = 0.40), total cholesterol (β = 0.814; P = 0.044), LDL (β = 0.663; P = 0.44), TSH (β = 0.262, P = 0.02), fT3 (β = -0.333, P = 0.009), fT4 (β = -0.275, P = 0.043) and creatinine (β = 0.374, P = 0.043) were independently correlated with ASI. ASI was also independently associated with LV end-systolic diameter (LVEDd; β = 1.751, P = 0.045), midwall fractional shortening (mFS; β = -1.266, P = 0.007), ratio mFS/end-systolic stress (mFS/ESS; β = -0.235, P = 0.026), LV shortening fraction (FS; β = -0.254, P = 0.017), and LA volume index (LAVI; β = 0.944, P = 0.022). Conclusions: In patients with AF, aortic stiffness correlated positively with KYNA, biochemical risk factors of atherosclerosis and with the indices of diastolic dysfunction of LV and LA. Revealed relationship between ASI and KYNA is an original observation, suggesting a potential role of disturbed kynurenine metabolism in the pathogenesis of arterial stiffening. KYNA, synthesis of which is influenced by homocysteine, emerges as a novel, non-classical factor associated with ASI in patients with AF.
Suggested Citation
Tomasz Zapolski & Anna Kamińska & Tomasz Kocki & Andrzej Wysokiński & Ewa M Urbanska, 2020.
"Aortic stiffness—Is kynurenic acid a novel marker? Cross-sectional study in patients with persistent atrial fibrillation,"
PLOS ONE, Public Library of Science, vol. 15(7), pages 1-19, July.
Handle:
RePEc:plo:pone00:0236413
DOI: 10.1371/journal.pone.0236413
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0236413. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.