Author
Listed:
- Ryo Ueno
- Liyuan Xu
- Wataru Uegami
- Hiroki Matsui
- Jun Okui
- Hiroshi Hayashi
- Toru Miyajima
- Yoshiro Hayashi
- David Pilcher
- Daryl Jones
Abstract
Background: Although machine learning-based prediction models for in-hospital cardiac arrest (IHCA) have been widely investigated, it is unknown whether a model based on vital signs alone (Vitals-Only model) can perform similarly to a model that considers both vital signs and laboratory results (Vitals+Labs model). Methods: All adult patients hospitalized in a tertiary care hospital in Japan between October 2011 and October 2018 were included in this study. Random forest models with/without laboratory results (Vitals+Labs model and Vitals-Only model, respectively) were trained and tested using chronologically divided datasets. Both models use patient demographics and eight-hourly vital signs collected within the previous 48 hours. The primary and secondary outcomes were the occurrence of IHCA in the next 8 and 24 hours, respectively. The area under the receiver operating characteristic curve (AUC) was used as a comparative measure. Sensitivity analyses were performed under multiple statistical assumptions. Results: Of 141,111 admitted patients (training data: 83,064, test data: 58,047), 338 had an IHCA (training data: 217, test data: 121) during the study period. The Vitals-Only model and Vitals+Labs model performed comparably when predicting IHCA within the next 8 hours (Vitals-Only model vs Vitals+Labs model, AUC = 0.862 [95% confidence interval (CI): 0.855–0.868] vs 0.872 [95% CI: 0.867–0.878]) and 24 hours (Vitals-Only model vs Vitals+Labs model, AUC = 0.830 [95% CI: 0.825–0.835] vs 0.837 [95% CI: 0.830–0.844]). Both models performed similarly well on medical, surgical, and ward patient data, but did not perform well for intensive care unit patients. Conclusions: In this single-center study, the machine learning model predicted IHCAs with good discrimination. The addition of laboratory values to vital signs did not significantly improve its overall performance.
Suggested Citation
Ryo Ueno & Liyuan Xu & Wataru Uegami & Hiroki Matsui & Jun Okui & Hiroshi Hayashi & Toru Miyajima & Yoshiro Hayashi & David Pilcher & Daryl Jones, 2020.
"Value of laboratory results in addition to vital signs in a machine learning algorithm to predict in-hospital cardiac arrest: A single-center retrospective cohort study,"
PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
Handle:
RePEc:plo:pone00:0235835
DOI: 10.1371/journal.pone.0235835
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235835. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.